Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087504    DOI: 10.1088/1674-1056/ac5240

Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band

Zhi-Biao Xu(徐志彪)1, Zhao-Hui Qi(齐照辉)2, Guo-Wu Wang(王国武)1, Chang Liu(刘畅)1, Jing-Hao Cui(崔晶浩)1, Wen-Liang Li(李文梁)1, and Tao Wang(王涛)1,†
1 Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 The Institute of Effectiveness Evaluation of Flying Vehicle, Beijing 100089, China
Abstract  The high-performance electromagnetic (EM) wave absorption material Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ was prepared by solid-state reaction, and its EM wave absorption properties were deeply studied. The results revealed that Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ could obtain excellent absorption properties in hundreds of megahertz by adjusting the Co$^{2+}$-Ti$^{4+}$ content. The best comprehensive property was obtained for $x=1.2$, where the optimal reflection loss ($RL$) value reaches $-30.42$ dB at about 600 MHz with thickness of 3.5 mm, and the corresponding effective absorption band covers the frequency range of 437 MHz-1 GHz. Moreover, the EM wave absorption mechanism was studied based on the simulation methods. The simulated results showed that the excellent EM wave absorption properties of Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ mainly originated from the internal loss caused by natural resonance, and the interface cancelation further improved the absorption properties and resulted in $RL$ peaks.
Keywords:  microwave absorption      M-type ferrite      high permeability      impedance matching  
Received:  23 November 2021      Revised:  22 January 2022      Accepted manuscript online:  07 February 2022
PACS:  75.47.Lx (Magnetic oxides)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574122) and the Joint Fund of Equipment Pre-Research and Ministry of Education, China (Grant No. 6141A02033242).
Corresponding Authors:  Tao Wang     E-mail:

Cite this article: 

Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛) Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band 2022 Chin. Phys. B 31 087504

[1] Liu J, Zhang L and Wu H 2021 J. Phys. D 54 203001
[2] Solgi S, Seyed Dorraji M S, Hosseini S F, Rasoulifard M H, Hajimiri I and Amani-Ghadim A 2021 Sci. Rep. 11 19339
[3] Zeng X, Cheng X, Yu R and Stucky G D 2020 Carbon 168 606
[4] Gao S, Wang G S, Guo L and Yu S H 2020 Small 16 1906668
[5] Xiao L X, Jin Z, Xia Z C, Shi L R, Huang J W, Chen B R, Shang C, Wei M and Long Z 2015 Chin. Phys. Lett. 32 017501
[6] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 027501
[7] Zhao K H, Wang Y H, Shi X L, Liu N and Zhang L W 2015 Chin. Phys. Lett. 32 087503
[8] Li X Y, Zhao L, Wei X Y, Li H and Jin K X 2018 Chin. Phys. B 27 117501
[9] Sun X D, Xu B, Wu H Y, Cao F Z, Zhao J J and Lu Y 2017 Acta Phys. Sin. 66 157501 (in Chinese)
[10] Gong B C, Yang H C, Jin K, Liu K and Lu Z Y 2020 Chin. Phys. B 29 077508
[11] Cui Q, Cai Y Q, X Li, Dun Z L, Sun P J, Zhou J S, Zhou H D and Cheng J G 2020 Chin. Phys. B 29 047502
[12] Li Y W, Song J, Wei J L, Zhou Y B and Li G 2014 Appl. Mech. Mater. 577 48
[13] Xue W, Yang G, Bi S, Zhang J and Hou Z L 2021 Carbon 173 521
[14] Wu C, Maier J and Yu Y 2016 Adv. Mater. 28 174
[15] Wang Y, Du Y, Xu P, Qiang R and Han X 2017 Polymers (Basel) 9 29
[16] Wu Y P, Ong C K, Lin G Q and Li Z W 2006 J. Phys. D:Appl. Phys. 39 2915
[17] Peng L, Hu Y B, Guo C, Li L Z, Wang R, Hu Y and Tu X Q 2015 Chin. Phys. Lett. 32 017502
[18] Wang Z L, Ma H, Wang F, Li M, Zhang L G and Xu X H 2016 Chin. Phys. Lett. 33 107501
[19] Liu D, Gao S, Jin R, Wang F, Chu X, Gao T and Wang Y 2019 Chin. Phys. B 28 057503
[20] Cheng Y, Ji G, Li Z, Lv H, Liu W, Zhao Y, Cao J and Du Y 2017 J. Alloys Compd. 704 289
[21] Zheng J, Du K, Xiao D, Zhou Z Y, Wei W G, Chen J J, Yin L F and J Shen 2016 Chin. Phys. Lett. 33 097501
[22] He X M, Zhong W and Du Y W 2018 Acta Phys. Sin. 67 227501 (in Chinese)
[23] Hu Q, Qiao G, Yang W, Liu Z, Zhang P, Liu S, Wang C, Zhou D, Han R, Cai D, Hu B and Yang J 2020 J. Phys. D 53 115001
[24] Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X and Wu L S 2020 Chin. Phys. B 29 057503
[25] Wang W, Guo J, Long C, Li W and Guan J 2015 J. Alloys Compd. 637 106
[26] Wang X, Song K, Gong W, Luo H, Yan S and Gong R 2016 IEEE Trans. Magn. 52 1
[27] Sugimoto S, Haga K, Kagotani T and Inomata K 2005 J. Magn. Magn. Mater. 290-291 1188
[28] Li D M, Fang S K, Tong J S, Su J, Zhang N and Song J L 2018 Acta Phys. Sin. 67 067501 (in Chinese)
[29] Wang F, Long C, Wu T, Li W, Chen Z, Xia F, Wu J and Guan J 2020 J. Alloys Compd. 823 153827
[30] Shu J C, Huang X Y and Cao M S 2021 Carbon 174 638
[31] Peng H, Ma X, Liu C, Lei C, Li X and Xiong Z 2021 J. Alloys Compd. 889 161636
[32] Houbi A, Aldashevich Z A, Atassi Y, Bagasharova Telmanovna Z, Saule M and Kubanych K 2021 J. Magn. Magn. Mater. 529 167839
[33] Li J, Xu T, Liu L, Hong Y, Song Z, Bai H and Zhou Z 2021 Ceram. Int. 47 19247
[34] Chang Y, Zhang Y, Meng C, Liu S, Chang H and Liu Z 2020 Appl. Phys. Lett. 116 082404
[35] Sözeri H, Deligöz H, Kavas H and Baykal A 2014 Ceram. Int. 40 8645
[36] Gan G, Zhang H, Li Q, Li J, Li M, Xu F and Jing Y 2018 Mater. Res. Bull. 97 37
[37] Yang Y, Zhang H, Li J, Rao Y, Wang G and Gan G 2020 Ceram. Int. 46 25697
[38] Gan G, Zhang D, Li J, Wang G, Huang X, Yang Y, Rao Y, Wang X and Zhang H 2020 Ceram. Int. 46 27996
[39] Gan G, Zhang D, Li J, Wang G, Huang X, Rao Y, Yang Y, Wang X, Zhang H, Chen R T 2020 Ceram. Int. 46 8398
[40] Wang X, Yin K, Cao T, Liao Y, Wang Z, Kou Q and Cheng D 2021 J. Alloys Compd. 885 160983
[41] Xu J, Lin P, Chen Q, Zhao X, He P, Lin T, Jiang C, Liu Y, Liu H and Long W 2021 Ceram. Int. 47 973
[42] Tehrani M K, Ghasemi A, Moradi M and Alam R S 2011 J. Alloys Compd. 509 8398
[43] Chawla S K, Mudsainiyan R K, Meena S S and Yusuf S M 2014 J. Magn. Magn. Mater. 350 23
[44] Morrish A H, Zhou X Z, Yang Z and Zeng H X 1994 Hyperfine Interact. 90 365
[45] Li J, Zhang H, Liu Y, Liao Y, Ma G and Yang H 2015 Mater. Res. Express 2 046104
[46] Wang C, Li L T, Zhou J, Qi X W and Yue Z X 2002 J. Mater. Sci. 13 713
[47] Ma G, Duan Y, Liu Y and Gao S 2018 J. Mater. Sci. 29 17405
[48] Ge C, Wang L, Liu G and Wang T 2018 J. Alloys Compd. 767 173
[49] Yan L, Wang J, Han X, Ren Y, Liu Q and Li F 2010 Nanotechnology 21 095708
[50] Wang T, Wang H, Tan G G, Wang L and Qiao L 2015 IEEE Trans. Magn. 51 1
[51] Wang T, Han R, Tan G, Wei J, Qiao L and Li F 2012 J. Appl. Phys. 112 104903
[52] Tang M, Zhang J Y, Bi S, Hou Z L, Shao X H, Zhan K T and Cao M S 2019 ACS Appl. Mater. Inter. 11 33285
[53] Zhang J, Wang P, Wang G, Duan B, Wang T and Li F 2020 J. Magn. Magn. Mater. 498 166096
[54] Dong C, Wang X, Zhou P, Liu T, Xie J and Deng L 2014 J. Magn. Magn. Mater. 354 340
[1] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[2] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[3] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[4] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[5] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[6] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[7] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[8] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[9] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[10] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[11] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[12] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[13] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
[14] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. Garcìa-Miquel and G.V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
[15] Investigation of photoelectron temporal characteristics in silver halide microcrystals using the microwave absorption technique
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dai Xiu-Hong (代秀红), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2004, 13(8): 1326-1329.
No Suggested Reading articles found!