Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 074208    DOI: 10.1088/1674-1056/ac4023
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser

Ying Han(韩颖)1, Bo Gao(高博)1,†, Jiayu Huo(霍佳雨)1, Chunyang Ma(马春阳)2, Ge Wu(吴戈)3, Yingying Li(李莹莹)1, Bingkun Chen(陈炳焜)1, Yubin Guo(郭玉彬)1, and Lie Liu(刘列)1
1 College of Communication Engineering, Jilin University, Changchun 130012, China;
2 Collaborative Innovation Center for Optoelectronic Science&Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China;
3 College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  We have numerically and experimentally observed the soliton pulsation with obvious breathing behavior in the anomalous fiber laser mode-locked by a nonlinear polarization rotation technique. The numerical study of the soliton pulsation with breathing behavior was analyzed through the split-step Fourier method at first, and it was found that the phase difference caused by the polarization controller would affect the breathing characteristics. Then, taking advantage of the dispersive Fourier transform technique, we confirmed the breathing characteristic of soliton pulsation in the same fiber laser as the simulation model experimentally. These results complement the research on the breathing characteristic of soliton pulsation.
Keywords:  soliton pulsation      dispersive Fourier transform      numerical simulation      breathing behavior  
Received:  12 October 2021      Revised:  29 November 2021      Accepted manuscript online:  05 December 2021
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the Jilin Province Science and Technology Development Plan Project, China (Grant Nos. 20190201128JC and 20200401125GX), the National Natural Science Foundation of China (Grant No. 62105209), Foundation and Applied Foundation Research Fund of Guangdong Province, China (Grant No. 2019A1515111060), and Science and Technology Project of the 13th Five-Year Plan of Jilin Provincial Department of Education, China (Grant Nos. JJKH20190157KJ and JJKH20190169KJ).
Corresponding Authors:  Bo Gao     E-mail:  gaobo0312@jlu.edu.cn

Cite this article: 

Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列) Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser 2022 Chin. Phys. B 31 074208

[1] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304
[2] Han Y, Guo Y B, Gao B, Ma C Y, Zhang R H and Zhang H 2020 Prog. Quantum Electron. 71 100264
[3] Han Y, Gao B, Li Y Y, Huo J Y and Guo Y B 2020 Optik 223 165381
[4] Zhao L, Tang D, Lin F and Zhao B 2004 Opt. Express 12 4573
[5] Soto-Crespo J M, Grapinet M, Grelu P and Akhmediev N 2004 Phys. Rev. E 70 066612
[6] Akhmediev N, Soto-Crespo J M and Town G 2001 Phys. Rev. E 63 056602
[7] Chang W, Ankiewicz A, Akhmediev N and Soto-Crespo J M 2007 Phys. Rev. E 76 016607
[8] Song L, Li L, Li Z and Zhou G 2005 Opt. Commun. 249 301
[9] Soto-Crespo J M, Akhmediev N and Ankiewicz A 2000 Phys. Rev. Lett. 85 2937
[10] He R, Wang Z, Liu Y, Wang Z, Liang H, Han S and He J 2018 Opt. Express 26 33116
[11] Chang W, Soto-Crespo J M, Vouzas P and Akhmediev N 2015 Phys. Rev. E 92 022926
[12] Zhang C, Wang J, Gao R, Yang L and Zhang Z 2019 Optik 179 700
[13] Du Y, Han M, Cheng P and Shu X 2019 Opt. Lett. 44 4087
[14] Wang P, Xiao X, Grelu P and Yang C 2017 IEEE Photon. J. 9 1
[15] Wang Y, Wang C, Zhang F, Guo J, Ma C, Huang W, Song Y, Ge Y, Liu J and Zhang H 2020 Rep. Prog. Phys. 83 116401
[16] Deng D, Zhang H, Zu J and Chen J 2021 Opt. Lett. 46 1612
[17] Liu M, Luo A P, Yan Y R, Hu S, Liu Y C, Cui H, Luo Z C and Xu W C 2016 Opt. Lett. 41 1181
[18] Das Chowdhury S, Dutta Gupta B, Chatterjee S, Sen R and Pal M 2020 J. Mod. Opt. 22 065505
[19] Du Y, Xu Z and Shu X 2018 Opt. Lett. 43 3602
[20] Wang X, Liu Y G, Wang Z, Yue Y, He J, Mao B, He R and Hu J 2019 Opt. Express 27 17729
[21] Du W, Li H, Li J, Wang Z, Zhang Z, Zhang S and Liu Y 2021 Opt. Express 29 14101
[22] Lapre C, Billet C, Meng F, Genty G and Dudley J M 2020 OSA Continuum 3 275
[23] Wang X, He J, Shi H, Mao B, Feng M, Wang Z, Yue Y and Liu Y G 2020 Opt. Lett. 45 4782
[24] Peng J and Zeng H 2019 Phys. Rev. Appl. 12 034052
[25] Wang X, He J, Mao B, Guo H, Wang Z, Yue Y and Liu Y G 2019 Opt. Express 27 28214
[26] Wei Z W, Liu M, Ming S X, Luo A P, Xu W C and Luo Z C 2018 Opt. Lett. 43 5965
[27] Peng J, Zhao Z, Boscolo S, Finot C, Sugavanam S, Churkin D V and Zeng H 2021 Laser Photon. Rev. 15 2000132
[28] He Z, Zhang C, Wang Z, Chen Y, Liu J and Fan D 2021 Appl. Phys. Express 14 042009
[29] Zhang Y, Cui Y, Huang L, Tong L and Liu X 2020 Opt. Lett. 45 6246
[30] Wu G, Tian X J, Gao B, Shan J D and Ru Y X 2011 Chin. Phys. Lett. 28 094202
[31] Song L J, Xu X Y and Wang Y 2020 Chin. Phys. B 29 064211
[32] Wang X, Liu Y G, Wang Z, Wang Z and Yang G 2019 J. Lightwave Technol. 37 1168
[33] Goda K and Jalali B 2013 Nat. Photon. 7 102
[34] Chen J, Zhao X, Li T, Yang J, Liu J and Zheng Z 2020 Opt. Express 28 14127
[35] Liu Y, Zhao X, Liu J, Hu G, Gong Z and Zheng Z 2014 Opt. Express 22 21012
[36] Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y, Yang X and Zhu J 2011 Opt. Express 19 1168
[37] Ryczkowski P, Närhi M, Billet C, Merolla J M, Genty G and Dudley J M 2018 Nat. Photon. 12 221
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[3] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[8] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[9] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[10] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[11] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[12] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[13] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[14] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!