ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Broadband low-frequency acoustic absorber based on metaporous composite |
Jia-Hao Xu(徐家豪)1, Xing-Feng Zhu(朱兴凤)1,2,†, Di-Chao Chen(陈帝超)1, Qi Wei(魏琦)1, and Da-Jian Wu(吴大建)1,‡ |
1 Jiangsu Key Laboratory on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; 2 Key Laboratory of Modern Acoustics, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Broadband absorption of low-frequency sound waves via a deep subwavelength structure is of great and ongoing interest in research and engineering. Here, we numerically and experimentally present a design of a broadband low-frequency absorber based on an acoustic metaporous composite (AMC). The AMC absorber is constructed by embedding a single metamaterial resonator into a porous layer. The finite element simulations show that a high absorption (absorptance A>0.8) can be achieved within a broad frequency range (from 290 Hz to 1074 Hz), while the thickness of AMC is 1/13 of the corresponding wavelength at 290 Hz. The broadband and high-efficiency performances of the absorber are attributed to the coupling between the two resonant absorptions and the trapped mode. The numerical simulations and experimental results are obtained to be in good agreement with each other. Moreover, the high broadband absorption can be maintained under random incident acoustic waves. The proposed absorber provides potential applications in low-frequency noise reduction especially when limited space is demanded.
|
Received: 13 October 2021
Revised: 18 December 2021
Accepted manuscript online: 07 January 2022
|
PACS:
|
43.28.+h
|
(Aeroacoustics and atmospheric sound)
|
|
43.50.+y
|
(Noise: its effects and control)
|
|
43.90.+v
|
(Other topics in acoustics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174197, 11874222, and 12027808). |
Corresponding Authors:
Xing-Feng Zhu, Da-Jian Wu
E-mail: zhuxingfeng@njnu.edu.cn;wudajian@njnu.edu.cn
|
Cite this article:
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建) Broadband low-frequency acoustic absorber based on metaporous composite 2022 Chin. Phys. B 31 064301
|
[1] Ma G C and Sheng P 2016 Sci. Adv. 2 e1501595 [2] Allard J F and Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (United Kingdom: John Wiley & Sons Ltd.) [3] Meng H, Ao Q B, Ren S W, Xin F X, Tang H P and Lu T J 2015 Compos. Sci. Technol. 107 10 [4] Cox T and D'Antonio P 2016 Acoustic Absorbers and Diffusers: Theory, Design and Application, 3rd edn. (Boca Raton: CRC Press) [5] Ma G C, Yang M, Xiao S W, Yang Z Y and Sheng P 2014 Nat. Mater. 13 873 [6] Yang M, Meng C, Fu C X, Li Y, Yang Z Y and Sheng P 2015 Appl. Phys. Lett. 107 104104 [7] He Z H, Zhao J B, Yao H and Chen X 2019 Acta Phys. Sin. 68 214302 (in Chinese) [8] Chen H J, Zhao W X and Hao C C 2015 Chin. J. Liq. Cryst. Disp. 30 234 [9] Gao D B, Liu X J, Tian Z F, Zhou Z M, Zeng X W and Han K F 2017 Acta Phys. Sin. 66 014307 (in Chinese) [10] Huang S, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2019 J. Acoust. Soc. Am. 145 254 [11] Tang Y F, Xin F X, Huang L X and Lu T J 2017 Europhy. Lett. 118 44002 [12] Jimenez N, Huang W, Romero-García V, Pagneux V and Groby J P 2016 Appl. Phys. Lett. 109 121902 [13] Zhang C and Hu X H 2016 Phys. Rev. Appl. 6 064025 [14] Yang M, Chen S Y, Fu C X and Sheng P 2017 Mater. Horiz. 4 673 [15] Shen Y C, Yang Y Y, Guo X S, Shen Y and Zhang D 2019 Appl. Phys. Lett. 114 083501 [16] Li Y and Assouar B M 2016 Appl. Phys. Lett. 108 063502 [17] Huang S B, Fang X S, Wang X, Assouar B, Cheng Q and Li Y 2018 Appl. Phys. Lett. 113 233501 [18] Donda K, Zhu Y F, Fan S W, Cao L Y, Li Y and Assouar B 2019 Appl. Phys. Lett. 115 173506 [19] Zhai S L, Wang Y B and Zhao X P 2019 Acta Phys. Sin. 68 034301 (in Chinese) [20] Wu X X, Fu C X, Li X, Meng Y, Gao Y B, Tian J X, Wang L, Huang Y Z, Yang Z Y and Wen W J 2016 Appl. Phys. Lett. 109 043501 [21] Gao N S, Hou H, Zhang Y N and Wu J H 2018 Mod. Phys. Lett. B 32 1850040 [22] Wu P, Mu Q J, Wu X X, Wang L, Li X, Zhou Y Q, Wang S X, Huang Y Z and Wen W J 2019 Phys. Lett. A 383 2361 [23] Xu Z X, Meng H Y, Chen A, Yang J, Liang B and Cheng J C 2021 J. Appl. Phys. 129 094502 [24] Groby J P, Duclos A, Dazel O, Boeckx L and Lauriks W 2011 J. Acoust. Soc. Am. 129 3035 [25] Groby J P, Dazel O, Duclos A, Boeckx L and Kelders L 2011 J. Acoust. Soc. Am. 130 3771 [26] Lagarrigue C, Groby J P, Tournat V, Dazel O and Umnova O 2013 J. Acoust. Soc. Am. 134 4670 [27] Groby J P, Lagarrigue C, Brouard B, Dazel O, Tournat V and Nennig B 2014 J. Acoust. Soc. Am. 136 1139 [28] Groby J P, Lagarrigue C, Brouard B, Dazel O, Tournat V and Nennig B 2015 J. Acoust. Soc. Am. 137 273 [29] Long H Y, Cheng Y, Tao J C and Liu X J 2017 Appl. Phys. Lett. 110 023502 [30] Zhou Y K, Li D T, Li Y and Hao T 2019 Appl. Phys. Lett. 115 093503 [31] Zhu X F, Lau S K, Lu Z B and Jeon W 2019 J. Sound Vib. 461 114922 [32] Liu C R, Wu J H, Ma F Y, Chen X and Yang Z R 2019 Appl. Phys. Express 12 084002 [33] Long H Y, Shao C, Liu C, Cheng Y and Liu X J 2019 Appl. Phys. Lett. 115 103503 [34] Liu C R, Wu J H, Chen X and Ma F Y 2019 J. Phys. D: Appl. Phys. 52 105302 [35] Liu C R, Wu J H, Yang Z Y and Ma F Y 2020 Compos. Struct. 246 112366 [36] Wu L, Liu X W, Xiong X Z, Pang J X and Zhang H W 2021 Software Guide 20 94 [37] Wu L, Zhang W J, Zhang B and Xiong X Z 2021 Software Guide 20 82 [38] Chung J Y and Blaser D A 1980 J. Acoust. Soc. Am. 68 907 [39] Kuttruff H 2009 Room Acoustics, fifth edn. (London and New York: Spon Press) pp. 52-55 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|