Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064216    DOI: 10.1088/1674-1056/ac685a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice

Xiateng Qin(秦夏腾)1,2, Yuan Jiang(蒋源)1,2, Weixin Ma(马伟鑫)1,2, Zhonghua Ji(姬中华)1,2,†, Wenxin Peng(彭文鑫)3, and Yanting Zhao(赵延霆)1,2,‡
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 State Grid Chongqing Electric Power Research Institute, Chongqing 404100, China
Abstract  Optical nanofiber (ONF) is a special tool to achieve the interaction between light and matter with ultralow power. In this paper, we demonstrate V-type electromagnetically induced transparency (EIT) in cold atoms trapped by an ONF-based two-color optical lattice. At an optical depth of 7.35, 90% transmission can be achieved by only 7.7 pW coupling power. The EIT peak and linewidth are investigated as a function of the coupling optical power. By modulating the pW-level control beam of the ONF-EIT system in sequence, we further achieve efficient and high contrast control of the probe transmission, as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.
Keywords:  optical nanofiber      optical lattice      V-type electromagnetically induced transparency      optical switch  
Received:  11 January 2022      Revised:  18 March 2022      Accepted manuscript online:  20 April 2022
PACS:  42.81.-i (Fiber optics)  
  37.10.Jk (Atoms in optical lattices)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
Fund: Project supported by State Grid science and Technology Project (Grant No. 5700-202127198A-0-0-00).
Corresponding Authors:  Zhonghua Ji, Yanting Zhao     E-mail:  jzh@sxu.edu.cn;zhaoyt@sxu.edu.cn

Cite this article: 

Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆) Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice 2022 Chin. Phys. B 31 064216

[1] Ham B S, Shahriar M S, Kim M K and Hemmer P R 1997 Opt. Lett. 22 1849
[2] Ham B S and Hemmer P R 2000 Phys. Rev. Lett. 84 4080
[3] Arimondo E 1996 Prog. Optics. 35 257
[4] Marangos J P 1998 J. Mod. Opt. 45 471
[5] Lazoudis A, Kirova T, Ahmed E H, Qi P, Huennekens J and Lyyra A M 2011 Phys. Rev. A 83 063419
[6] Acosta V M, Jensen K, Santori C, Budker D and Beausoleil R G 2013 Phys. Rev. Lett. 110 213605
[7] Welch G R, Padmabandu G G, Fry E S, Lukin M D, Nikonov D E, Sander F, Scully M O, Weis A and Tittel F K 1998 Found. Phys. 28 621
[8] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A 68 015806
[9] Zhao J M, Yin W B, Wang L R, Xiao L T and Jia S T 2002 Chin. Phys. 11 241
[10] Kang H J and Noh H R 2017 Opt. Express 25 21762
[11] Kimble H J 2008 Nature 453 1023
[12] Wang X, Song L J, Wang C X, Zhang P F, Li G and Zhang T C 2019 Chin. Phys. B 28 073701
[13] Le Kien F and Rauschenbeutel A 2015 Phys. Rev. A 91 053847
[14] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
[15] Sayrin C, Clausen C, Albrecht B, Schneeweiss P and Rauschenbeutel A 2015 Optica 2 353
[16] Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A 92 043806
[17] Liu R J, Su D Q, Song Z X, Ji Z H and Zhao Y T 2019 Chin. Phys. B 28 124201
[18] Kumar R, Gokhroo V and Chormaic S N 2015 New J. Phys. 17 123012
[19] Su D Q, Liu R J, Ji Z X, Qi X D, Song Z X, Zhao Y T, Xiao L T and Jia S T 2019 New J. Phys. 21 043053
[20] Spillane S M, Pati G S, Salit K, Hall M, Kumar P, Beausoleil R G and Shahriar M S 2008 Phys. Rev. Lett. 100 233602
[21] Ward J M, Maimaiti A, Le V H and Chormaic S N 2014 Rev. Sci. Instrum. 85 111501
[22] Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S and Richardson D J 2009 Adv. Opt. Photonics 1 107
[23] Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. Atom. Mol. Opt. Phy. 66 439
[24] Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M 2020 Phys. Rev. A 51 576
[25] Lacroûte C, Chol K S, Goban A, Alton D J, Ding D, Stern N P and Klmble H J 2012 New J. Phys. 14 023056
[26] Schlosser N, Reymond G and Grangier P 2002 Phys. Rev. Lett. 89 023005
[27] Kang H J and Noh H R 2017 Opt. Express. 25 21762
[28] Choi G W and Noh H R 2015 Opt. Rev. 22 521
[29] Sagle J, Namiotka R K and Huennekens J 1996 J. Phys. B-At. Mol. Opt. 29 2629
[30] Pappas P G, Burns M M, Hinshelwood D D, Feld M S and Murnick D E 1980 Phys. Rev. A 21 1955
[31] Khan S, Kumar M P, Bharti V and Natarajan V 2017 Eur. Phys. J. D 71 1
[32] Marek J 1977 Phys. Lett. A 60 190
[33] Gutterres R F, Amiot C, Fioretti A, Gabbanini C, Mazzoni M and Dulieu O 2002 Phys. Rev. A 66 024502
[34] Fleischhauer M and Lukin M D 2002 Phys. Rev. A 65 022314
[35] Ottaviani C, Rebić S, Vitali D and Tombesi P 2006 Phys. Rev. A 73 010301
[36] Li C F and Na D 2009 Chin. Phys. Lett. 26 054203
[37] Dong H M, Nga L T Y and Bang N H 2019 Appl. Opt. 58 4192
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[6] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[7] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[8] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[11] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[12] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[13] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[14] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[15] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
No Suggested Reading articles found!