1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 State Grid Chongqing Electric Power Research Institute, Chongqing 404100, China
Abstract Optical nanofiber (ONF) is a special tool to achieve the interaction between light and matter with ultralow power. In this paper, we demonstrate V-type electromagnetically induced transparency (EIT) in cold atoms trapped by an ONF-based two-color optical lattice. At an optical depth of 7.35, 90% transmission can be achieved by only 7.7 pW coupling power. The EIT peak and linewidth are investigated as a function of the coupling optical power. By modulating the pW-level control beam of the ONF-EIT system in sequence, we further achieve efficient and high contrast control of the probe transmission, as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.
(Optical bistability, multistability, and switching, including local field effects)
Fund: Project supported by State Grid science and Technology Project (Grant No. 5700-202127198A-0-0-00).
Corresponding Authors:
Zhonghua Ji, Yanting Zhao
E-mail: jzh@sxu.edu.cn;zhaoyt@sxu.edu.cn
Cite this article:
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆) Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice 2022 Chin. Phys. B 31 064216
[1] Ham B S, Shahriar M S, Kim M K and Hemmer P R 1997 Opt. Lett.22 1849 [2] Ham B S and Hemmer P R 2000 Phys. Rev. Lett.84 4080 [3] Arimondo E 1996 Prog. Optics.35 257 [4] Marangos J P 1998 J. Mod. Opt.45 471 [5] Lazoudis A, Kirova T, Ahmed E H, Qi P, Huennekens J and Lyyra A M 2011 Phys. Rev. A83 063419 [6] Acosta V M, Jensen K, Santori C, Budker D and Beausoleil R G 2013 Phys. Rev. Lett.110 213605 [7] Welch G R, Padmabandu G G, Fry E S, Lukin M D, Nikonov D E, Sander F, Scully M O, Weis A and Tittel F K 1998 Found. Phys.28 621 [8] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A68 015806 [9] Zhao J M, Yin W B, Wang L R, Xiao L T and Jia S T 2002 Chin. Phys.11 241 [10] Kang H J and Noh H R 2017 Opt. Express25 21762 [11] Kimble H J 2008 Nature453 1023 [12] Wang X, Song L J, Wang C X, Zhang P F, Li G and Zhang T C 2019 Chin. Phys. B28 073701 [13] Le Kien F and Rauschenbeutel A 2015 Phys. Rev. A91 053847 [14] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett.114 180503 [15] Sayrin C, Clausen C, Albrecht B, Schneeweiss P and Rauschenbeutel A 2015 Optica2 353 [16] Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A92 043806 [17] Liu R J, Su D Q, Song Z X, Ji Z H and Zhao Y T 2019 Chin. Phys. B28 124201 [18] Kumar R, Gokhroo V and Chormaic S N 2015 New J. Phys.17 123012 [19] Su D Q, Liu R J, Ji Z X, Qi X D, Song Z X, Zhao Y T, Xiao L T and Jia S T 2019 New J. Phys.21 043053 [20] Spillane S M, Pati G S, Salit K, Hall M, Kumar P, Beausoleil R G and Shahriar M S 2008 Phys. Rev. Lett.100 233602 [21] Ward J M, Maimaiti A, Le V H and Chormaic S N 2014 Rev. Sci. Instrum.85 111501 [22] Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S and Richardson D J 2009 Adv. Opt. Photonics1 107 [23] Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. Atom. Mol. Opt. Phy.66 439 [24] Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M 2020 Phys. Rev. A51 576 [25] Lacroûte C, Chol K S, Goban A, Alton D J, Ding D, Stern N P and Klmble H J 2012 New J. Phys.14 023056 [26] Schlosser N, Reymond G and Grangier P 2002 Phys. Rev. Lett.89 023005 [27] Kang H J and Noh H R 2017 Opt. Express.25 21762 [28] Choi G W and Noh H R 2015 Opt. Rev.22 521 [29] Sagle J, Namiotka R K and Huennekens J 1996 J. Phys. B-At. Mol. Opt.29 2629 [30] Pappas P G, Burns M M, Hinshelwood D D, Feld M S and Murnick D E 1980 Phys. Rev. A21 1955 [31] Khan S, Kumar M P, Bharti V and Natarajan V 2017 Eur. Phys. J. D71 1 [32] Marek J 1977 Phys. Lett. A60 190 [33] Gutterres R F, Amiot C, Fioretti A, Gabbanini C, Mazzoni M and Dulieu O 2002 Phys. Rev. A66 024502 [34] Fleischhauer M and Lukin M D 2002 Phys. Rev. A65 022314 [35] Ottaviani C, Rebić S, Vitali D and Tombesi P 2006 Phys. Rev. A73 010301 [36] Li C F and Na D 2009 Chin. Phys. Lett.26 054203 [37] Dong H M, Nga L T Y and Bang N H 2019 Appl. Opt.58 4192
Effective sideband cooling in an ytterbium optical lattice clock Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4]
Superfluid to Mott-insulator transition in a one-dimensional optical lattice Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.