ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice |
Xiateng Qin(秦夏腾)1,2, Yuan Jiang(蒋源)1,2, Weixin Ma(马伟鑫)1,2, Zhonghua Ji(姬中华)1,2,†, Wenxin Peng(彭文鑫)3, and Yanting Zhao(赵延霆)1,2,‡ |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 State Grid Chongqing Electric Power Research Institute, Chongqing 404100, China |
|
|
Abstract Optical nanofiber (ONF) is a special tool to achieve the interaction between light and matter with ultralow power. In this paper, we demonstrate V-type electromagnetically induced transparency (EIT) in cold atoms trapped by an ONF-based two-color optical lattice. At an optical depth of 7.35, 90% transmission can be achieved by only 7.7 pW coupling power. The EIT peak and linewidth are investigated as a function of the coupling optical power. By modulating the pW-level control beam of the ONF-EIT system in sequence, we further achieve efficient and high contrast control of the probe transmission, as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.
|
Received: 11 January 2022
Revised: 18 March 2022
Accepted manuscript online: 20 April 2022
|
PACS:
|
42.81.-i
|
(Fiber optics)
|
|
37.10.Jk
|
(Atoms in optical lattices)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
42.65.Pc
|
(Optical bistability, multistability, and switching, including local field effects)
|
|
Fund: Project supported by State Grid science and Technology Project (Grant No. 5700-202127198A-0-0-00). |
Corresponding Authors:
Zhonghua Ji, Yanting Zhao
E-mail: jzh@sxu.edu.cn;zhaoyt@sxu.edu.cn
|
Cite this article:
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆) Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice 2022 Chin. Phys. B 31 064216
|
[1] Ham B S, Shahriar M S, Kim M K and Hemmer P R 1997 Opt. Lett. 22 1849 [2] Ham B S and Hemmer P R 2000 Phys. Rev. Lett. 84 4080 [3] Arimondo E 1996 Prog. Optics. 35 257 [4] Marangos J P 1998 J. Mod. Opt. 45 471 [5] Lazoudis A, Kirova T, Ahmed E H, Qi P, Huennekens J and Lyyra A M 2011 Phys. Rev. A 83 063419 [6] Acosta V M, Jensen K, Santori C, Budker D and Beausoleil R G 2013 Phys. Rev. Lett. 110 213605 [7] Welch G R, Padmabandu G G, Fry E S, Lukin M D, Nikonov D E, Sander F, Scully M O, Weis A and Tittel F K 1998 Found. Phys. 28 621 [8] Joshi A, Yang W and Xiao M 2003 Phys. Rev. A 68 015806 [9] Zhao J M, Yin W B, Wang L R, Xiao L T and Jia S T 2002 Chin. Phys. 11 241 [10] Kang H J and Noh H R 2017 Opt. Express 25 21762 [11] Kimble H J 2008 Nature 453 1023 [12] Wang X, Song L J, Wang C X, Zhang P F, Li G and Zhang T C 2019 Chin. Phys. B 28 073701 [13] Le Kien F and Rauschenbeutel A 2015 Phys. Rev. A 91 053847 [14] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503 [15] Sayrin C, Clausen C, Albrecht B, Schneeweiss P and Rauschenbeutel A 2015 Optica 2 353 [16] Jones D E, Franson J D and Pittman T B 2015 Phys. Rev. A 92 043806 [17] Liu R J, Su D Q, Song Z X, Ji Z H and Zhao Y T 2019 Chin. Phys. B 28 124201 [18] Kumar R, Gokhroo V and Chormaic S N 2015 New J. Phys. 17 123012 [19] Su D Q, Liu R J, Ji Z X, Qi X D, Song Z X, Zhao Y T, Xiao L T and Jia S T 2019 New J. Phys. 21 043053 [20] Spillane S M, Pati G S, Salit K, Hall M, Kumar P, Beausoleil R G and Shahriar M S 2008 Phys. Rev. Lett. 100 233602 [21] Ward J M, Maimaiti A, Le V H and Chormaic S N 2014 Rev. Sci. Instrum. 85 111501 [22] Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S and Richardson D J 2009 Adv. Opt. Photonics 1 107 [23] Solano P, Grover J A, Hoffman J E, Ravets S, Fatemi F K, Orozco L A and Rolston S L 2017 Adv. Atom. Mol. Opt. Phy. 66 439 [24] Gea-Banacloche J, Li Y Q, Jin S Z and Xiao M 2020 Phys. Rev. A 51 576 [25] Lacroûte C, Chol K S, Goban A, Alton D J, Ding D, Stern N P and Klmble H J 2012 New J. Phys. 14 023056 [26] Schlosser N, Reymond G and Grangier P 2002 Phys. Rev. Lett. 89 023005 [27] Kang H J and Noh H R 2017 Opt. Express. 25 21762 [28] Choi G W and Noh H R 2015 Opt. Rev. 22 521 [29] Sagle J, Namiotka R K and Huennekens J 1996 J. Phys. B-At. Mol. Opt. 29 2629 [30] Pappas P G, Burns M M, Hinshelwood D D, Feld M S and Murnick D E 1980 Phys. Rev. A 21 1955 [31] Khan S, Kumar M P, Bharti V and Natarajan V 2017 Eur. Phys. J. D 71 1 [32] Marek J 1977 Phys. Lett. A 60 190 [33] Gutterres R F, Amiot C, Fioretti A, Gabbanini C, Mazzoni M and Dulieu O 2002 Phys. Rev. A 66 024502 [34] Fleischhauer M and Lukin M D 2002 Phys. Rev. A 65 022314 [35] Ottaviani C, Rebić S, Vitali D and Tombesi P 2006 Phys. Rev. A 73 010301 [36] Li C F and Na D 2009 Chin. Phys. Lett. 26 054203 [37] Dong H M, Nga L T Y and Bang N H 2019 Appl. Opt. 58 4192 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|