INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Stackable luminescent device integrating blue light emitting diode with red organic light emitting diode |
Kang Su(苏康)1,2, Jing Li(李璟)1,2, Chang Ge(葛畅)1,2, Xing-Dong Lu(陆兴东)1,2, Zhi-Cong Li(李志聪)1,2, Guo-Hong Wang(王国宏)1,2, Jin-Min Li(李晋闽)1,2 |
1 Research and Development Center for Semiconductor Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We present a novel stackable luminescent device integrating a blue light emitting diode (LED) with a red organic LED (OLED) in series. The anode of the OLED is connected with the cathode of the LED through a via in the insulation layer on the LED. The LED-OLED hybrid device is electroluminescent and two electroluminescence (EL) peaks (the blue peak around 454 nm and the red peak around 610 nm) are observed clearly. The effect of the indium tin oxide (ITO) layer on the device performance is analyzed. Compared with the individual LED and OLED, their combination shows great potential applications in the field of white lighting, plant lighting, and display.
|
Received: 16 January 2020
Revised: 18 February 2020
Accepted manuscript online:
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0404800). |
Corresponding Authors:
Jing Li
E-mail: lijing2006@semi.ac.cn
|
Cite this article:
Kang Su(苏康), Jing Li(李璟), Chang Ge(葛畅), Xing-Dong Lu(陆兴东), Zhi-Cong Li(李志聪), Guo-Hong Wang(王国宏), Jin-Min Li(李晋闽) Stackable luminescent device integrating blue light emitting diode with red organic light emitting diode 2020 Chin. Phys. B 29 048504
|
[1] |
Nakamura S, Senoh M, Iwasa N, Nagahama S, Yamada T and Mukai T 1995 Jpn. J. Appl. Phys. 34 1332
|
[2] |
Akasaki I and Amano H 1997 Semicond. Semimetals 48 357
|
[3] |
Li J M, Liu Z, Liu Z Q, Yan J C, Wei T B, Yi X Y and Wang J X 2016 J. Semicond. 37 061001
|
[4] |
D'Andrade B W and Forrest S R 2004 Adv. Mater. 16 1585
|
[5] |
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B and Leo K 2009 Nature 459 234
|
[6] |
Ying L, Ho C L, Wu H, Cao Y and Wong W Y 2014 Adv. Mater. 26 2459
|
[7] |
Wang Q and Ma D 2010 Chem. Soc. Rev. 39 2387
|
[8] |
Meyer J, Hamwi S, Kroger M, Kowalsky W, Riedl T and Kahn A 2012 Adv. Mater. 24 5408
|
[9] |
Yang X, Zhou G and Wong W Y 2014 J. Mater. Chem. C 2 1760
|
[10] |
Wu X M, Hua Y L, Wang Z Q, Yin S G, Zheng J J, Deng J C and Petty M C 2006 Chin. Phys. Lett. 23 1012
|
[11] |
Shan Q, Song J, Zou Y, Li J, Xu L, Xue J, Dong Y, Han B, Chen J and Zeng H 2017 Small 13 1701770
|
[12] |
Si J, Liu Y, He Z, Du H, Du K, Chen D, Li J, Xu M, Tian H, He H, Di D, Lin C, Cheng Y, Wang J and Jin Y 2017 ACS Nano 11 11100
|
[13] |
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
|
[14] |
Wang P, Bai X, Sun C, Zhang X, Zhang T and Zhang Y 2016 Appl. Phys. Lett. 109 063106
|
[15] |
Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q and Zeng H 2018 Adv. Mater. 30 e1800764
|
[16] |
Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z and Wang Y 2016 Chem. Mater. 28 3515
|
[17] |
Wang Z, Chu I H, Zhou F and Ong S P 2016 Chem. Mater. 28 4024
|
[18] |
Song E, Zhou Y, Yang X B, Liao Z, Zhao W, Deng T, Wang L, Ma Y, Ye S and Zhang Q 2017 ACS Photon. 4 2556
|
[19] |
Du Y, Shao C Y, Dong Y J, Yang Q H and Hua W 2015 Chin. Phys. B 24 117801
|
[20] |
Xu S H, Wang X L and Wu Y M 2000 Eco-agriculture Res. 8 18
|
[21] |
Hu M Y and Wu Y P 2014 15th International Conference on Electronic Packaging Technology, August 12-15, Chengdu, China, p. 97
|
[22] |
Kim K H, Lee S, Moon C K, Kim S Y, Park Y S, Lee J H, Woo Lee J, Huh J, You Y and Kim J J 2014 Nat. Commun. 5 4769
|
[23] |
Meng Q Z, Fang Y Z, Ma Y, Li W Z and Jin L F 2013 Mater. Sci. 03 45
|
[24] |
Kim K W, Jung S D, Kim D S, Kang H S, Im K S, Oh J J, Ha J B, Shin J K and Lee J H 2011 IEEE Electron Dev. Lett. 32 1376
|
[25] |
Tang K, Huang W and Chow T P 2009 J. Electron. Mater. 38 523
|
[26] |
Li L, Li P, Wen Y, Wen J and Zhu Y 2009 Appl. Phys. Lett. 94 261103
|
[27] |
Zhang J Y, Cai L E, Zhang B P, Hu X L, Jiang F, Yu J Z and Wang Q M 2009 Appl. Phys. Lett. 95 161110
|
[28] |
Fred S 2006 Light-Emitting Diodes, 2nd edn. (Cambridge: Cambridge University Press) pp. 313-314
|
[29] |
Wen S W, Lee M T and Chen C H 2005 J. Disp. Technol. 1 90
|
[30] |
Suzuki T, Nonaka Y, Watabe T, Nakashima H, Seo S, Shitagaki S and Yamazaki S 2014 Jpn. J. Appl. Phys. 53 052102
|
[31] |
Su Y J, Wu X M, Hua Y L, Shen L Y, Jiao Z Q, Dong M S and Yin S G 2012 Chin. Phys. B 21 058503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|