Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068505    DOI: 10.1088/1674-1056/ac4903
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spin transport in epitaxial Fe3O4/GaAs lateral structured devices

Zhaocong Huang(黄兆聪)1,2, Wenqing Liu(刘文卿)3,4, Jian Liang(梁健)1, Qingjie Guo(郭庆杰)1, Ya Zhai(翟亚)1,†, and Yongbing Xu(徐永兵)2,3,‡
1 School of Physics, Southeast University, Nanjing 211189, China;
2 Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO105 DD, United Kingdom;
3 York-Nanjing Joint Center in Spintronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
4 Department of Electronic Engineering, Royal Holloway University of London, Egham, Surrey TW200 EX, United Kingdom
Abstract  Research in the spintronics community has been intensively stimulated by the proposal of the spin field-effect transistor (SFET), which has the potential for combining the data storage and process in a single device. Here we report the spin dependent transport on a Fe3O4/GaAs based lateral structured device. Parallel and antiparallel states of two Fe3O4 electrodes are achieved. A clear MR loop shows the perfect butterfly shape at room temperature, of which the intensity decreases with the reducing current, showing the strong bias dependence. Understanding the spin-dependent transport properties in this architecture has strong implication in further development of the spintronic devices for room-temperature SFETs.
Keywords:  spin field-effect transistor      spin injection and detection      half metal      magnetoresistance  
Received:  08 November 2021      Revised:  04 January 2022      Accepted manuscript online:  05 January 2022
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.75.Hh (Spin polarized field effect transistors)  
  73.43.Qt (Magnetoresistance)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204800), and the National Natural Science Foundation of China (Grant Nos. 52071079 and 11504047).
Corresponding Authors:  Ya Zhai, Yongbing Xu     E-mail:  yazhai@seu.edu.cn;ybxu@nju.edu.cn

Cite this article: 

Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵) Spin transport in epitaxial Fe3O4/GaAs lateral structured devices 2022 Chin. Phys. B 31 068505

[1] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[2] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Wang L, Chen L C, Liu W Y, Han S, Wang W W, Lu Z J and Chen S S 2018 Chin. Phys. B 27 097202
[4] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B 27 107202
[5] Benítez L A, Sierra J F, Torres W S, Arrighi A, Bonell F, Costache M V and Valenzuela S O 2018 Nat. Phys. 14 303
[6] Liu T, Wang X, Wang H, Shi G, Gao F, Feng H, Deng H, Hu L, Lochner E, Schlottmann P, von Molnár S, Li Y, Zhao J and Xiong P 2020 ACS Nano 14 15983
[7] Kikkawa J M and Awschalom D D 1998 Phys. Rev. Lett. 80 4313
[8] Kikkawa J M and Awschalom D D 1999 Nature 397 139
[9] Lou X, Adelmann C, Crooker S A, Garlid E S, Zhang J, Reddy K S M, Flexner S D, Palmstrom C J and Crowell P A 2007 Nat. Phys. 3 197
[10] Van't Erve O M J, Li C H, Kioseoglou G, Hanbicki A T, Osofsky M, Cheng S F and Jonker B T 2007 Appl. Phys. Lett. 91 122515
[11] Dash S P, Sharma S, Patel R S, de Jong M P and Jansen R 2009 Nature 462 491
[12] Bhat S G and Kumar P S A 2014 Sci. Rep. 4 6296
[13] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[14] Dlubak B, Martin M B, Deranlot C, Servet B, Xavier S, Mattana R, Sprinkle M, Berger C, De Heer WA, Petroff F, Anane A, Seneor P and Fert A 2012 Nat. Phys. 8 557
[15] Fert A and Jaffres H 2001 Phys. Rev. B 64 184420
[16] Wong P K J, Zhang W, Wu J, Will I G, Xu Y B, Xia K, Holmes S N, Farrer I, Beere H E and Ritchie D A 2016 Sci. Rep. 6 29845
[17] Dedkov Y S, Rudiger U and Guntherodt G 2002 Phys. Rev. B 65 064417
[18] Lu X Y, Atkinson L J, Kuerbanjiang B, Liu B, Li G Q, Wang Y C, Wang J L, Ruan X Z, Wu J, Evans R F L, Lazarov V K, Chantrell R W and Xu Y B 2019 Appl. Phys. Lett. 114 192406
[19] Rakshit R, Hattori A N, Naitoh Y, Shima H, Akinaga H and Tanaka H 2019 Nano Lett. 19 5003
[20] Fonin M, Pentcheva R, Dedkov Yu S, Sperlich M, Vyalikh D V, Scheffler M, Rüdiger U and Güntherodt G 2005 Phys. Rev. B 72 104436
[21] Schmidt G, Ferrand D, Molenkamp L W, Filip A T and van Wees B J 2000 Phys. Rev. B 62 R4790
[22] Fert A and Jaffres H 2001 Phys. Rev. B 64 184420
[23] Jonker B T, Kioseoglou G, Hanbicki A T, Li C H and Thompson P E 2007 Nat. Phys. 3 542
[24] Oltscher M, Ciorga M, Utz M, Schuh D, Bougeard D and Weiss D 2014 Phys. Rev. Lett. 113 236602
[25] Kountouriotis K, Barreda J L, Keiper T D, Zhang M and Xiong P 2018 Nano Lett. 18 4386
[26] Hassan S S A, Xu Y B, Ahmad E and Lu Y X 2007 IEEE Trans. Magn. 43 2875
[27] Watts S M, Boothman C, van Dijken S and Coey J M D 2005 Appl. Phys. Lett. 86 212108
[28] Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515
[29] Huang Z C, Liu W Q, Yue J J, Zhou Q H, Zhang W, Lu YX, Sui Y X, Zhai Y, Chen Q, Dong S, Wang J L, Xu Y B and Wang B P 2016 ACS Appl. Mater. Interfaces 8 27353
[30] Lu Y X, Claydon J S, Xu Y B, Schofield D M, Thompson S M and van der Laan G 2004 Phys. Rev. B 70 233304
[31] Zhai Y, Huang Z C, Fu Y, Ni C, Lu Y X, Xu Y B, Wu J and Zhai H R 2007 J. Appl. Phys. 101 09D126
[32] Feng D, Ding S and Zhai H 1998 Superconductivity and Magnetism (Beijing: Science Press) p. 463 (in Chinese)
[33] Hirohata A, Xu Y B, Guertler C M, Bland J A C and Holmes S N 2001 Phys. Rev. B 63 104425
[34] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New Jersey: John Wiley and Sons) p. 162
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[6] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[7] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[8] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[9] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[10] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[11] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[12] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[13] Current-dependent positive magnetoresistance inLa0.8Ba0.2MnO3 ultrathin films
Guankai Lin(林冠凯), Haoru Wang(王昊儒), Xuhui Cai(蔡旭晖), Wei Tong(童伟), and Hong Zhu(朱弘). Chin. Phys. B, 2021, 30(9): 097502.
[14] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[15] Magneto-transport properties of thin flakes of Weyl semiconductor tellurium
Nan Zhang(张南), Bin Cheng(程斌), Hui Li(李惠), Lin Li(李林), and Chang-Gan Zeng(曾长淦). Chin. Phys. B, 2021, 30(8): 087304.
No Suggested Reading articles found!