Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120305    DOI: 10.1088/1674-1056/abc0de
RAPID COMMUNICATION Prev   Next  

Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection

Jing-Min Hou(侯净敏)†
School of Physics, Southeast University, Nanjing 211189, China
Abstract  We propose a square optical lattice in which some of neighbor hoppings have a Peierls phase. The Peierls phase makes the lattice have a special band structure and induces the existence of Dirac points in the Brillouin zone, which means that topological semimetals exist in the system. The Dirac points move with the change of the Peierls phase and the Dirac cones are anisotropic for some vales of the Peierls phase. The lattice has a novel hidden symmetry, which is a composite antiunitary symmetry composed of a translation operation, a sublattice exchange, a complex conjugation, and a local U(1) gauge transformation. We prove that the Dirac points are protected by the hidden symmetry and perfectly explain the moving of Dirac points with the change of the Peierls phase based on the hidden symmetry protection.
Keywords:  topological semimetal      optical lattice      hidden symmetry  
Received:  14 July 2020      Revised:  01 January 1900      Accepted manuscript online:  14 October 2020
PACS:  03.75.Ss (Degenerate Fermi gases)  
  02.20.-a (Group theory)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.30.Fk (Fermion systems and electron gas)  
Corresponding Authors:  Corresponding author. E-mail: jmhou@seu.edu.cn   

Cite this article: 

Jing-Min Hou(侯净敏) Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection 2020 Chin. Phys. B 29 120305

[1] Hasan M Z and Kane C L Rev. Mod. Phys. 82 3045 DOI: 10.1103/RevModPhys.82.30452010
[2] Qi X L and Zhang S C Rev. Mod. Phys. 83 1057 DOI: 10.1103/RevModPhys.83.10572011
[3] Wan X, Turner A M, Vishwanath A and Savrasov S Y Phys. Rev. B 83 205101 DOI: 10.1103/PhysRevB.83.2051012011
[4] Xu G, Weng H, Wang Z, Dai X and Fang Z Phys. Rev. Lett. 107 186806 DOI: 10.1103/PhysRevLett.107.1868062011
[5] Burkov A A, Hook M D and Balents L Phys. Rev. B 84 235126 DOI: 10.1103/PhysRevB.84.2351262011
[6] Burkov A A and Balents L Phys. Rev. Lett. 107 127205 DOI: 10.1103/PhysRevLett.107.1272052011
[7] Fang C, Gilbert M J, Dai X and Bernevig B A Phys. Rev. Lett. 108 266802 DOI: 10.1103/PhysRevLett.108.2668022012
[8] Zyuzin A A, Wu S and Burkov A A Phys. Rev. 85 165110 DOI: 10.1103/PhysRevB.85.1651102012
[9] Jaksch D and Zoller P Ann. Phys. 315 52 DOI: 10.1016/j.aop.2004.09.0102005
[10] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243 DOI: 10.1080/00018730701223200
[11] Bloch I, Dalibard J and Zwerger W Rev. Mod. Phys. 80 885 DOI: 10.1103/RevModPhys.80.8852008
[12] Cooper N R, Dalibard J and Spielman I B Rev. Mod. Phys. 91 015005 DOI: 10.1103/RevModPhys.91.0150052019
[13] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I Nature 415 39 DOI: 10.1038/415039a2002
[14] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P Phys. Rev. Lett. 81 3108 DOI: 10.1103/PhysRevLett.81.31081998
[15] Hou J M and Ge M L Phys. Rev. A 67 063607 DOI: 10.1103/PhysRevA.67.0636072003
[16] Lin Y J, Compton R L, Jimènez-Garcìa K, Porto J V and Spielman I B Nature 462 628 DOI: 10.1038/nature086092009
[17] Aidelsburger M, Atala M, Nascimb\`ene S, Trotzky S, Chen Y A and Bloch I Phys. Rev. Lett. 107 255301 DOI: 10.1103/PhysRevLett.107.2553012011
[18] Miyake H, Siviloglou G A, Kennedy C J, Burton W C and Ketterle W Phys. Rev. Lett. 111 185302 DOI: 10.1103/PhysRevLett.111.1853022013
[19] Struck J, ölschläger C, Weinberg M, Hauke P, Simonet J, Eckardt A, Lewenstein M, Sengstock K and Windpassinger P Phys. Rev. Lett. 108 225304 DOI: 10.1103/PhysRevLett.108.2253042012
[20] J Struck, Weinberg M, ölschläger C, Windpassinger P, Simonet J, Sengstock K, Höppner R, Hauke P, Eckardt A, Lewenstein M and Mathey L Nat. Phys. 9 738 https://www.nature.com/articles/nphys27502013
[21] Trotzky S, Cheinet P, Fölling S, Feld M, Schnorrberger U, Rey A M, Polkovnikov A, Demler E A, Lukin M D and Bloch I Science 319 295 DOI: 10.1126/science.11508412008
[22] Eckardt A, Hauke P, Soltan-Panahi P, Becker C, Sengstock K and Lewenstein M Europhys. Lett. 89 10010 DOI: 10.1209/0295-5075/89/100102010
[23] Simon J, Bakr W S, Ma R, Tai M E, Preiss P M and Greiner M Nature 472 307 DOI: 10.1038/nature099942011
[24] Greif D, Uehlinger T, Jotzu G, Tarruell L and Esslinger T Science 340 1307 DOI: 10.1126/science.12363622013
[25] Hou J M, Yang W X and Liu X J Phys. Rev. A 79 043621 DOI: 10.1103/PhysRevA.79.0436212009
[26] Lim L K, Smith C M and Hemmerich A Phys. Rev. Lett. 100 130402 DOI: 10.1103/PhysRevLett.100.1304022008
[27] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A Phys. Rev. Lett. 103 035301 DOI: 10.1103/PhysRevLett.103.0353012009
[28] Bercioux D, Urban D F, Grabert H and Häusler W Phys. Rev. A 80 063603 DOI: 10.1103/PhysRevA.80.0636032009
[29] Sun K, Liu W V, Hemmerich A and Das Sarma S Nat. Phys. 8 67 DOI: 10.1038/nphys21342012
[30] Hou J M Phys. Rev. Lett. 111 130403 DOI: 10.1103/PhysRevLett.111.1304032013
[31] Goldman N, Anisimovas E, Gerbier F, öhberg P, Spielman I B and Juzeli\=unas G New J. Phys. 15 013025 DOI: 10.1088/1367-2630/15/1/0130252013
[32] Mai X Y, Zhang D W, Li Z and Zhu S L Phys. Rev. A 95 063616 DOI: 10.1103/PhysRevA.95.0636162017
[33] Nielsen H B and Ninomiya M 1981 Nuclear Physics B 185 20 DOI: 10.1016/0550-3213(81)90361-8
[34] Hou J M and Chen W Front. Phys. 13 130301 DOI: 10.1007/s11467-017-0712-82018
[35] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W Phys. Rev. Lett. 82 4569 DOI: 10.1103/PhysRevLett.82.45691999
[36] Steinhauer J, Ozeri R, Katz N and Davidson N Phys. Rev. Lett. 88 120407 DOI: 10.1103/PhysRevLett.88.1204072002
[37] Stanescu T D, Galitski V and Das Sarma S Phys. Rev. A 82 013608 DOI: 10.1103/PhysRevA.82.0136082010
[38] Liu X J, Liu X, Wu C and Sinova J Phys. Rev. A 81 033622 DOI: 10.1103/PhysRevA.81.0336222010
[39] Goldman N, Beugnon J and Gerbier F Phys. Rev. Lett. 108 255303 DOI: 10.1103/PhysRevLett.108.2553032012
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[5] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[8] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[9] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[10] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[11] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[12] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[13] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[14] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[15] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
No Suggested Reading articles found!