Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070602    DOI: 10.1088/1674-1056/ab9290
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
SPECIAL TOPIC—Ultracold atom and its application in precision measurement Prev   Next  

A transportable optical lattice clock at the National Time Service Center

De-Huan Kong(孔德欢)1,2, Zhi-Hui Wang(王志辉)3, Feng Guo(郭峰)1,2, Qiang Zhang(张强)1,2, Xiao-Tong Lu(卢晓同)1,2, Ye-Bing Wang(王叶兵)1, Hong Chang(常宏)1,2
1 CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi'an 710600, China;
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Abstract  We report a transportable one-dimensional optical lattice clock based on 87Sr at the National Time Service Center. The transportable apparatus consists of a compact vacuum system and compact optical subsystems. The vacuum system with a size of 90 cm×20 cm×42 cm and the beam distributors are assembled on a double-layer optical breadboard. The modularized optical subsystems are integrated on independent optical breadboards. By using a 230 ms clock laser pulse, spin-polarized spectroscopy with a linewidth of 4.8 Hz is obtained which is close to the 3.9 Hz Fourier-limit linewidth. The time interleaved self-comparison frequency instability is determined to be 6.3×10-17 at an averaging time of 2000 s.
Keywords:  optical lattice clock      strontium atoms      spin-polarized spectra      instability  
Received:  20 February 2020      Revised:  30 April 2020      Accepted manuscript online: 
PACS:  06.30.Ft (Time and frequency)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Jk (Atoms in optical lattices)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775220 and 11803042), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100).
Corresponding Authors:  Hong Chang     E-mail:

Cite this article: 

De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏) A transportable optical lattice clock at the National Time Service Center 2020 Chin. Phys. B 29 070602

[1] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[3] Paul S, Swanson T B, Hanssen J and Taylor J 2017 Metrologia 54 247
[4] Ludlow A D, Boyd M M, Ye J, Peik E and Schimidt P O 2015 Rev. Mod. Phys. 87 637
[5] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B G, MacNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[6] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, MacNally R L, Souderhouse L, Robinson J M, Zhang W, Bloom B G and Ye J 2017 Science 358 90
[7] Liu H, Zhang X, Jiang K L, Wang J Q, Zhou Q, Xiong Z X, He L X and Lyu B L 2017 Chin. Phys. Lett. 34 020601
[8] Poli N, Schioppo M, Vogt S, Falke St, Sterr U, Lisdat Ch and Tino G M 2014 Appl. Phys. B 117 1107
[9] Ohmae N, Sakama S and Katori H 2019 Electr. Commun. Jpn. 102 43
[10] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[11] Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y and Chang H 2018 Chin. Phys. B 27 023701
[12] Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat Ch 2018 Phys. Rev. A 98 053443
[13] Schiller S, Tino G M, Gill P, et al. 2009 Exp. Astron. 23 573
[14] Wolf P, Bordé Ch J, Clairon A, et al. 2009 Exp. Astron. 23 651
[15] Grotti J, Koller S, Vogt S, et al. 2014 Nat. Phys. 14 437
[16] Kollwitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[17] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[18] Petit G, Arias F and Panfilo G 2015 C. R. Phys. 16 480
[19] Fujieda M, Piester G, Gotoh T, Becker J, Aida M and Bauch A 2014 Metrologia 51 253
[20] Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B and Hidetoshi Katori 2016 Nat. Photon. 10 662
[21] Mcgrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[22] Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat Ch 2017 Phys. Rev. Lett. 118 073601
[23] Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H and Huang X 2017 Appl. Phys. B 123 112
[24] Lu X T, Li T, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 233401 (in Chinese)
[25] Li T, Lu X T, Zhang Q, Kong D H, Wang Y B and Chang H 2019 Acta Phys. Sin. 68 093701 (in Chinese)
[26] Lu X T, Yin M J, Li T, Wang Y B and Chang H 2020 Appl. Sci. 10 1440
[27] Han J X, Lu X T, Lu B Q, wang Y B, Kong D H, Zhang S G and Chang H 2018 Acta Opt. Sin. 38 0702001
[28] Stephen W and Patrick G 2011 Opt. Lett. 36 3572
[29] Ido T and Katori H 2003 Phys. Rev. Lett. 91 053001
[30] Falke S, Schnatz H, Winfred J, Middlemann T, Vogt S, Weyer S, Lipphardt B, Grosche G, Riehle F, Sterr U and Lisdat C 2011 Metrologia 48 399
[31] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[32] Guo Y, Yin M J, Xu Q F, Wang Y B, Lu B Q, Ren J, Zhao F J and Chang H 2018 Acta Phys. Sin. 67 070601 (in Chinese)
[33] Li Y, Lin Y G, Wang Q, Yang T, Sun Z, Zang E J, Fang Z J 2018 Chin. Opt. Lett. 16 051402
[34] Lin Y G and Fang Z J 2018 Acta Phys. Sin. 67 160604 (in Chinese)
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[3] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[4] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[5] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[6] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[7] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[8] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[9] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[10] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[11] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[12] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[13] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[14] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[15] Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
Ya-Dong Huang(黄亚冬), Jia-Wei Fu(付佳维), and Long-Miao Chen(陈龙淼). Chin. Phys. B, 2022, 31(12): 124701.
No Suggested Reading articles found!