|
|
Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2 |
Kui Huang(黄逵)1,2,3, Zhenxian Li(李政贤)1, Deping Guo(郭的坪)4, Haifeng Yang(杨海峰)1, Yiwei Li(李一苇)1,5, Aiji Liang(梁爱基)1,5, Fan Wu(吴凡)1, Lixuan Xu(徐丽璇)6, Lexian Yang(杨乐仙)6, Wei Ji(季威)4, Yanfeng Guo(郭艳峰)1, Yulin Chen(陈宇林)1,5,7,†, and Zhongkai Liu(柳仲楷)1,5,‡ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China; 2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100190, China; 5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China; 6 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; 7 Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom |
|
|
Abstract As a van der Waals ferromagnet with high Curie temperature, Fe5-xGeTe2 has attracted tremendous interests recently. Here, using high-resolution angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of Fe5-xGeTe2 crystals and its temperature evolution. Our ARPES measurement reveals two types of band structures from two different terminations with slight kz evolution. Interestingly, across the ferromagnetic transition, we observed the merging of two split bands above the Curie temperature, suggesting the band splitting due to the exchange interaction within the itinerant Stoner model. Our results provide important insights into the electronic and magnetic properties of Fe5-xGeTe2 and the understanding of magnetism in a two-dimensional ferromagnetic system.
|
Received: 13 January 2022
Revised: 03 March 2022
Accepted manuscript online:
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
77.80.B-
|
(Phase transitions and Curie point)
|
|
Fund: This research used BL03U of Shanghai Synchrotron Radiation Facility and I05 of the Diamond Light Source.We also acknowledge the Analytical Instrumentation Center of ShanghaiTech University for x-ray diffraction and MPMS measurements.Z.K.Liu acknowledges the National Key R&D Program of China (Grant No.2017YFA0305400). |
Corresponding Authors:
Yulin Chen,E-mail:yulin.chen@physics.ox.ac.uk;Zhongkai Liu,E-mail:liuzhk@shanghaitech.edu.cn
E-mail: yulin.chen@physics.ox.ac.uk;liuzhk@shanghaitech.edu.cn
|
About author: 2022-3-10 |
Cite this article:
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷) Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2 2022 Chin. Phys. B 31 057404
|
[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [2] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [3] Liu B, Zou Y, Zhang L, Zhou S, Wang Z, Wang W, Qu Z and Zhang Y 2016 Sci. Rep. 6 33873 [4] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212 [5] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406 [6] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549 [7] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [8] Lin M W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G and Xiao K 2016 J. Mater. Chem. C 4 315 [9] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 [10] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125 [11] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [12] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778 [13] Xu X, Li Y W, Duan S R, Zhang S L, Chen Y J, Kang L, Liang A J, Chen C, Xia W, Xu Y, Malinowski P, Xu X D, Chu J H, Li G, Guo Y F, Liu Z K, Yang L X and Chen Y L 2020 Phys. Rev. B 101 201104 [14] Chen B, Yang J, Wang H, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M 2013 J. Phys. Soc. Jpn. 82 124711 [15] Verchenko V Y, Tsirlin A A, Sobolev A V, Presniakov I A and Shevelkov A V 2015 Inorg. Chem. 54 8598 [16] Stahl J, Shlaen E and Johrendt D 2018 Zeitschrift für Anorg. und Allg. Chemie 644 1923 (in France) [17] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X and McGuire M A 2019 ACS Nano 13 4436 [18] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il Min B, Yang B J and Kim J S 2018 Nat. Mater. 17 794 [19] You Y, Gong Y, Li H, Li Z, Zhu M, Tang J, Liu E, Yao Y, Xu G, Xu F and Wang W 2019 Phys. Rev. B 100 134441 [20] Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Zhang W, Chen Q, Liu Y, Luo X, Xie D, Luo L, Zhang Z and Lai X 2018 Sci. Adv. 4 eaao679 [21] Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y and Wang W 2020 Nano Lett. 20 868 [22] Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407 [23] May A F, Bridges C A and McGuire M A 2019 Phys. Rev. Mater. 3 104401 [24] Li Z, Xia W, Su H, Yu Z, Fu Y, Chen L, Wang X, Yu N, Zou Z and Guo Y 2020 Sci. Rep. 10 15345 [25] Wu X, Lei L, Yin Q, Zhao N N, Li M, Wang Z, Liu Q, Song W, Ma H, Ding P, Cheng Z, Liu K, Lei H and Wang S 2021 Phys. Rev. B 104 165101 [26] Watson M D, Marković I, Mazzola F, Rajan A, Morales E A, Burn D M, Hesjedal T, van der Laan G, Mukherjee S, Kim T K, Bigi C, Vobornik I, Ciomaga Hatnean M, Balakrishnan G and King P D C 2020 Phys. Rev. B 101 205125 [27] Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N, Felser C and Yan B 2019 Nat. Commun. 10 3783 [28] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223 [29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [31] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [32] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|