Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057404    DOI: 10.1088/1674-1056/ac5c3c
RAPID COMMUNICATION Prev   Next  

Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2

Kui Huang(黄逵)1,2,3, Zhenxian Li(李政贤)1, Deping Guo(郭的坪)4, Haifeng Yang(杨海峰)1, Yiwei Li(李一苇)1,5, Aiji Liang(梁爱基)1,5, Fan Wu(吴凡)1, Lixuan Xu(徐丽璇)6, Lexian Yang(杨乐仙)6, Wei Ji(季威)4, Yanfeng Guo(郭艳峰)1, Yulin Chen(陈宇林)1,5,7,†, and Zhongkai Liu(柳仲楷)1,5,‡
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China;
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100190, China;
5 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China;
6 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China;
7 Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
Abstract  As a van der Waals ferromagnet with high Curie temperature, Fe5-xGeTe2 has attracted tremendous interests recently. Here, using high-resolution angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of Fe5-xGeTe2 crystals and its temperature evolution. Our ARPES measurement reveals two types of band structures from two different terminations with slight kz evolution. Interestingly, across the ferromagnetic transition, we observed the merging of two split bands above the Curie temperature, suggesting the band splitting due to the exchange interaction within the itinerant Stoner model. Our results provide important insights into the electronic and magnetic properties of Fe5-xGeTe2 and the understanding of magnetism in a two-dimensional ferromagnetic system.
Keywords:  angle-resolved photoemission spectroscopy      van der Waals ferromagnet      electronic structure  
Received:  13 January 2022      Revised:  03 March 2022      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  31.15.A- (Ab initio calculations)  
  77.80.B- (Phase transitions and Curie point)  
Fund: This research used BL03U of Shanghai Synchrotron Radiation Facility and I05 of the Diamond Light Source.We also acknowledge the Analytical Instrumentation Center of ShanghaiTech University for x-ray diffraction and MPMS measurements.Z.K.Liu acknowledges the National Key R&D Program of China (Grant No.2017YFA0305400).
Corresponding Authors:  Yulin Chen,E-mail:yulin.chen@physics.ox.ac.uk;Zhongkai Liu,E-mail:liuzhk@shanghaitech.edu.cn     E-mail:  yulin.chen@physics.ox.ac.uk;liuzhk@shanghaitech.edu.cn
About author:  2022-3-10

Cite this article: 

Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷) Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2 2022 Chin. Phys. B 31 057404

[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[2] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[3] Liu B, Zou Y, Zhang L, Zhou S, Wang Z, Wang W, Qu Z and Zhang Y 2016 Sci. Rep. 6 33873
[4] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212
[5] Jiang S, Shan J and Mak K F 2018 Nat. Mater. 17 406
[6] Jiang S, Li L, Wang Z, Mak K F and Shan J 2018 Nat. Nanotechnol. 13 549
[7] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[8] Lin M W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G and Xiao K 2016 J. Mater. Chem. C 4 315
[9] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[10] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[11] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[12] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778
[13] Xu X, Li Y W, Duan S R, Zhang S L, Chen Y J, Kang L, Liang A J, Chen C, Xia W, Xu Y, Malinowski P, Xu X D, Chu J H, Li G, Guo Y F, Liu Z K, Yang L X and Chen Y L 2020 Phys. Rev. B 101 201104
[14] Chen B, Yang J, Wang H, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M 2013 J. Phys. Soc. Jpn. 82 124711
[15] Verchenko V Y, Tsirlin A A, Sobolev A V, Presniakov I A and Shevelkov A V 2015 Inorg. Chem. 54 8598
[16] Stahl J, Shlaen E and Johrendt D 2018 Zeitschrift für Anorg. und Allg. Chemie 644 1923 (in France)
[17] May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X and McGuire M A 2019 ACS Nano 13 4436
[18] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il Min B, Yang B J and Kim J S 2018 Nat. Mater. 17 794
[19] You Y, Gong Y, Li H, Li Z, Zhu M, Tang J, Liu E, Yao Y, Xu G, Xu F and Wang W 2019 Phys. Rev. B 100 134441
[20] Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Zhang W, Chen Q, Liu Y, Luo X, Xie D, Luo L, Zhang Z and Lai X 2018 Sci. Adv. 4 eaao679
[21] Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y and Wang W 2020 Nano Lett. 20 868
[22] Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407
[23] May A F, Bridges C A and McGuire M A 2019 Phys. Rev. Mater. 3 104401
[24] Li Z, Xia W, Su H, Yu Z, Fu Y, Chen L, Wang X, Yu N, Zou Z and Guo Y 2020 Sci. Rep. 10 15345
[25] Wu X, Lei L, Yin Q, Zhao N N, Li M, Wang Z, Liu Q, Song W, Ma H, Ding P, Cheng Z, Liu K, Lei H and Wang S 2021 Phys. Rev. B 104 165101
[26] Watson M D, Marković I, Mazzola F, Rajan A, Morales E A, Burn D M, Hesjedal T, van der Laan G, Mukherjee S, Kim T K, Bigi C, Vobornik I, Ciomaga Hatnean M, Balakrishnan G and King P D C 2020 Phys. Rev. B 101 205125
[27] Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N, Felser C and Yan B 2019 Nat. Commun. 10 3783
[28] Blöchl P E, Jepsen O and Andersen O K 1994 Phys. Rev. B 49 16223
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[32] Anisimov V I, Aryasetiawan F and Lichtenstein A I 1997 J. Phys. Condens. Matter 9 767
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[7] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[8] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[9] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[15] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
No Suggested Reading articles found!