|
|
Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8 |
Juewen Fan(范珏雯)1, Bingyan Jiang(江丙炎)1, Jiaji Zhao(赵嘉佶)1, Ran Bi(毕然)1, Jiadong Zhou(周家东)2, Zheng Liu(刘政)3, Guang Yang(杨光)4, Jie Shen(沈洁)4, Fanming Qu(屈凡明)4, Li Lu(吕力)4, Ning Kang(康宁)5, and Xiaosong Wu(吴孝松)1,6,7,† |
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China; 2 Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China; 3 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; 4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 5 Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China; 6 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; 7 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Introduction of spin-orbit coupling (SOC) in a Josephson junction (JJ) gives rise to unusual Josephson effects. We investigate JJs based on a newly discovered heterodimensional superlattice V5S8 with a special form of SOC. The unique homointerface of our JJs enables elimination of extrinsic effects due to interfaces and disorder. We observe asymmetric Fraunhofer patterns with respect to both the perpendicular magnetic field and the current. The asymmetry is influenced by an in-plane magnetic field. Analysis of the pattern points to a nontrivial spatial distribution of the Josephson current that is intrinsic to the SOC in V5S8.
|
Received: 29 January 2022
Revised: 01 March 2022
Accepted manuscript online:
|
PACS:
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
Fund: Project supported by the National Key Basic Research Program of China (Grant No.2016YFA0300600) and the National Natural Science Foundation of China (Grant Nos.11574005 and 11774009). |
Corresponding Authors:
Xiaosong Wu,E-mail:xswu@pku.edu.cn
E-mail: xswu@pku.edu.cn
|
About author: 2022-3-14 |
Cite this article:
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松) Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8 2022 Chin. Phys. B 31 057402
|
[1] Buzdin A 2008 Phys. Rev. Lett. 101 107005 [2] Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2008 Phys. Rev. Lett. 101 107001 [3] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001 [4] Bergeret F S and Tokatly I V 2015 Europhys. Lett. 110 57005 [5] Wu Y, He J J, Han T, Xu S, Wu Z, Lin J, Zhang T, He Y and Wang N 2019 Phys. Rev. B 99 121406 [6] Liu J F and Chan K S 2010 Phys. Rev. B 82 125305 [7] Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407 [8] Yokoyama T and Nazarov Y V 2014 Europhys. Lett. 108 47009 [9] Konschelle F, Tokatly I V and Bergeret F S 2015 Phys. Rev. B 92 125443 [10] Rasmussen A, Danon J, Suominen H, Nichele F, Kjaergaard M and Flensberg K 2016 Phys. Rev. B 93 155406 [11] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002 [12] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [13] Lyu Z, Pang Y, Wang J, Yang G, Fan J, Liu G, Ji Z, Jing X, Yang C, Qu F and Lu L 2018 Phys. Rev. B 98 155403 [14] Banerjee A, Sundaresh A, Ganesan R and Kumar P S A 2018 ACS Nano 12 12665 [15] Zheng H and Jia J F 2019 Chin. Phys. B 28 67403 [16] Tinkham M 1996 Introduction to Superconductivity (New York: McGraw-Hill) pp. 215–217 [17] Hu J, Wu C and Dai X 2007 Phys. Rev. Lett. 99 067004 [18] Wu H, Wang Y, Xu Y, Sivakumar P K, Pasco C, Filippozzi U, Parkin S S P, Zeng Y J, McQueen T and Ali M N 2021 arXiv: 2103.15809[cond-mat.supr-con] [19] Misaki K and Nagaosa N 2021 Phys. Rev. B 103 245302 [20] Trimble C J, Wei M T, Yuan N F Q, Kalantre S S, Liu P, Han H J, Han M G, Zhu Y, Cha J J, Fu L and Williams J R 2021 npj Quantum Mater. 6 61 [21] Suominen H J, Danon J, Kjaergaard M, Flensberg K, Shabani J, Palmstrøm C J, Nichele F and Marcus C M 2017 Phys. Rev. B 95 035307 [22] Chen A Q, Park M J, Gill S T, Xiao Y, Reig-i Plessis D, MacDougall G J, Gilbert M J and Mason N 2018 Nat. Commun. 9 3478 [23] Assouline A, Feuillet-Palma C, Bergeal N, Zhang T, Mottaghizadeh A, Zimmers A, Lhuillier E, Eddrie M, Atkinson P, Aprili M and Aubin H 2019 Nat. Commun. 10 126 [24] Beach A, i Plessis D R, MacDougall G and Mason N 2021 J. Phys.: Condens. Matter 33 425601 [25] Zhou J, Zhang W, Lin Y C, Zhou Y, Du H, Tang B, Shi J, Jian B, Cao X, Lin B, Zhu C, Deng Y, Fu Q, Duan R, Wang X, Chen J, Guo S, Guo W, Huang Y, Yao Y, Gao Y, Yao Y, Suenaga K, Wu X S and Liu Z 2021 Heterodimensional superlattice with room temperature anomalous Hall effect, under review [26] Fan J, Jiang B, Zhao J, Bi R, Zhou J, Liu Z, Kang N, Qu F, Lu L and Wu X 2022 J. Appl. Phys. 131 093903 [27] Pippard A B 1960 Rep. Prog. Phys. 23 176 [28] Kittel C 2005 Introduction to Solid State Physics (New Jersey: John Wiley & Sons) pp. 146, 139 [29] Dubos P, Courtois H, Pannetier B, Wilhelm F K, Zaikin A D and Schön G 2001 Phys. Rev. B 63 064502 [30] Barone A and Paternò G 1982 Physics and Applications of the Josephson Effect (New York: John Wiley & Sons) pp. 96–112 [31] Golod T, Rydh A and Krasnov V M 2010 Phys. Rev. Lett. 104 227003 [32] Golod T, Pagliero A and Krasnov V M 2019 Phys. Rev. B 100 174511 [33] Stan G, Field S B and Martinis J M 2004 Phys. Rev. Lett. 92 097003 [34] Zhang Y and Zhang C 2011 Phys. Rev. B 84 085123 [35] Ren Y, Zeng J, Deng X, Yang F, Pan H and Qiao Z 2016 Phys. Rev. B 94 085411 [36] Liu Z, Zhao G, Liu B, Wang Z F, Yang J and Liu F 2018 Phys. Rev. Lett. 121 246401 [37] Zyuzin V A 2020 Phys. Rev. B 102 241105 [38] Chen C Z, He J J, Ali M N, Lee G H, Fong K C and Law K T 2018 Phys. Rev. B 98 075430 [39] Bocquillon E, Deacon R S, Wiedenmann J, Leubner P, Klapwijk T M, Brüne C, Ishibashi K, Buhmann H and Molenkamp L W 2016 Nat. Nanotechnol. 12 137 [40] Kononov A, Abulizi G, Qu K, Yan J, Mandrus D, Watanabe K, Taniguchi T and Schönenberger C 2020 Nano Lett. 20 4228 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|