Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050303    DOI: 10.1088/1674-1056/ac4489
GENERAL Prev   Next  

Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities

Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳)
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
Abstract  We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2≤M <N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.
Keywords:  quantum communication      entanglement purification      electron-spin system  
Received:  12 October 2021      Revised:  16 December 2021      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No.61901420),the Shanxi Provincial Science Foundation for Youths (Grant No.201901D211235),and the Scientific and Technological Innovation Program of Higher Education Institutions of Shanxi Province,China (Grant No.2019L0507).
Corresponding Authors:  Fang-Fang Du,E-mail:Duff@nuc.edu.cn     E-mail:  Duff@nuc.edu.cn
About author:  2021-12-18

Cite this article: 

Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳) Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities 2022 Chin. Phys. B 31 050303

[1] Nielsen M A and Chuang I 2002 Am. J. Phys. 70 558
[2] Cao H, Ma W P, Liu G, Lü L D and Xue Z Y 2020 Chin. Phys. Lett. 37 050303
[3] Ke Z J, Wang Y T, Yu S, Liu W, Meng Y, Li Z P, Wang H, Li Q, Xu J S, Xiao Y, Tang J S, Li C F and Guo G C 2020 Chin. Phys. B 29 080301
[4] Yang L, Liu Y C and Li Y S 2020 Chin. Phys. B 29 060301
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Zhao Y B, Zhang W L, Wang D, Song X T, Zhou L J and Ding C B 2019 Chin. Phys. B 28 104203
[7] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China Phys. Mech. Astron. 62 110311
[8] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303
[9] Li X, Yuan H W, Zhang C M and Wang Q 2020 Chin. Phys. B 29 070303
[10] Chen X T, Zhang L P, Chang S K, Zhang H and Hu L Y 2021 Chin. Phys. B 30 060304
[11] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[12] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[13] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[14] Gao Z K, Li T and Li Z H 2019 Europhys. Lett. 125 40004
[15] Li T and Long G L 2020 New J. Phys. 22 063017
[16] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L and Chen X F 2021 Light Sci. Appl. 10 183
[17] Long G L and Zhang H R 2021 Sci. Bull. 66 1267
[18] Sheng Y B, Zhou L and Long G L 2021 Sci. Bull. 11 002
[19] Liu X, Li Z J, Luo D, Huang C F, Ma D, Geng M M, Wang J W, Zhang Z R and Wei K J 2021 Sci. China Phys. Mech. Astron 64 120311
[20] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[21] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 040302
[22] Gao Z K, Li T and Li Z H 2020 Sci. China Phys. Mech. Astron. 63 120311
[23] Zad H A 2016 Chin. Phys. Lett. 33 090302
[24] Li T, Wang Z K and Xia K Y 2020 Opt. Express 28 1316
[25] Zhang W and Han Z F 2019 Acta Phys. Sin. 68 070301 (in Chinese)
[26] Luo J W, Wu D W, Li X, Zhu H N and Wei T L 2019 Acta Phys. Sin. 68 064204 (in Chinese)
[27] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[28] Li T, Yang G J and Deng F G 2016 Phys. Rev. A 93 012302
[29] Li Y, Ye X J and Chen J L 2016 Chin. Phys. Lett. 33 080301
[30] Kalb N, Reiserer A A, Humphreys P C, Bakermans J J W, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science 356 928
[31] Wang G Y and Long G L 2019 Sci. China Phys. Mech. Astron. 63 220311
[32] Wang G Y, Ai Q, Deng F G and Ren B C 2020 Opt. Express 13 18693
[33] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[34] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[35] Pan J W, Simon C, Brukner č and Zeilinger A 2001 Nature 410 1067
[36] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 059902
[37] Zhou L, Zhong W and Sheng Y B 2020 Opt. Express 28 2291
[38] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett. 126 010503
[39] Riera S F, Sekatski P, Pirker A and Dür W 2021 Phys. Rev. Lett. 127 040502
[40] Ecker S, Sohr P, Bulla L, Huber M, Bohmann M and Ursin R 2021 Phys. Rev. Lett. 127 040506
[41] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[42] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[43] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
[44] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[45] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G 2018 Phys. Rev. Appl. 10 054058
[46] Du F F, Liu Y T, Shi Z R, Liang Y X, Tang J and Liu J 2019 Opt. Express 27 27046
[47] Wang P, Yu C Q, Wang Z X, Yuan R Y, Du F F and Ren B C 2022 Front. Phys. 17 31501
[48] Murao M, Plenio M B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075
[49] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[50] Sheng Y B, Deng F G, Zhao B K, Wang T J and Zhou H Y 2009 Eur. Phys. J. D 55 235
[51] Deng F G 2011 Phys. Rev. A 84 052312
[52] Sheng Y B, Deng F G and Zhou H Y 2009 Phys. Rev. A 373 1823
[53] Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[54] Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, de Ronde B, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
[55] Pursley B C, Carter S G, Yakes M K, Bracker A S and Gammon D 2018 Nat. Commun. 9 115
[56] Berezovsky J, Mikkelsen M H, Stoltz N G, Coldren L A and Awschalom D D 2008 Science 320 349
[57] Abe E, Wu H, Ardavan A and Morton J J L 2011 Appl. Phys. Lett. 98 251108
[58] Lagoudakis K G, Fischer K, Sarmiento T, Majumdar A, Rundquist A, Lu J, Bajcsy M and Vučković J 2013 New J. Phys. 15 113056
[59] Hu C Y, Munro W J, O'Brien J L and Rarity J G 2009 Phys. Rev. B 80 205326
[60] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[61] Hu C Y, Young A, O'Brien J L, Munro W J and Rarity J G 2008 Phys. Rev. B 78 085307
[62] An J H, Feng M and Oh C H 2009 Phys. Rev. A 79 032303
[63] Wang T J, Song S Y and Long G L 2012 Phys. Rev. A 85 062311
[64] Li T and Deng F G 2016 Phys. Rev. A 94 062310
[65] Wei H R, Zheng Y B, Hua M and Xu G F 2020 Appl. Phys. Express 13 082007
[66] Han Y H, Cao C, Fan L and Zhang R 2021 Opt. Express 29 20045
[67] Somaschi N, Giesz V, De Santis L, Loredo J C, Almeida M P, Hornecker G, Portalupi S L, Grange T, Antón C, Demory J, Gómez C, Sagnes I, Lanzillotti-Kimura N D, Lemaítre A, Auffeves A, White A G, Lanco L and Senellart P 2016 Nat. Photon. 10 340
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[3] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[4] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[5] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[6] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[7] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[8] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[9] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[10] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[11] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[12] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[13] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[14] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[15] Optimal multi-photon entanglement concentration with the photonic Faraday rotation
Lan Zhou(周澜), Dan-Dan Wang(王丹丹), Xing-Fu Wang(王兴福), Shi-Pu Gu(顾世浦), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(2): 020302.
No Suggested Reading articles found!