1 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China; 2 Department of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Abstract A novel scheme is proposed to estimate three environmental parameters, the detuning, the temperature and the squeezing strength with one-qubit or two-qubit probes. Quantum Fisher information and the fidelity of the atom probes are calculated. When the detuning between the frequency of cavity field and the atomic transition frequency is estimated, the dynamics of quantum Fisher information shows oscillatory and rising behaviors. To estimate the temperature of the thermal reservoir, the one-qubit probe with the superposition initial state is more favorable than the two-qubit probe with the entangled initial state. When the squeezing strength of the squeezed vacuum reservoir is estimated, we find that the estimation precision is significantly improved by utilizing the two-qubit probe with the maximal entangled initial state. Our work provides a potential application in the open quantum system and quantum information processing.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.91536115 and 11534008) and Natural Science Foundation of Shaanxi Province,China (Grant No.2016JM1005).
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕) Environmental parameter estimation with the two-level atom probes 2022 Chin. Phys. B 31 050304
[1] Geononi M G, Olivares S and Paris M G A 2011 Phys. Rev. Lett.106 153603 [2] Demkowicz-Dobrzański R 2011 Phys. Rev. A83 061802(R) [3] Chwedeńczuk J, Piazza F and Smerzi A 2011 New J. Phys.13 065023 [4] Pinel O, Jian P, Treps N, Fabre C and Braun A D 2013 Phys. Rev. A88 040102(R) [5] Zhang L J and Xiao M 2013 Chin. Phys. B22 110310 [6] Xiang G Y and Guo G C 2013 Chin. Phys. B22 110601 [7] Yao Y, Ge L, Xiao X, Wang X G and Sun C P 2014 Phys. Rev. A90 022327 [8] He Z and Yao C M 2014 Chin. Phys. B23 110601 [9] Li Y L, Xiao X and Yao Y 2015 Phys. Rev. A91 052105 [10] Chapeau-Blondeau F 2015 Phys. Rev. A91 052310 [11] Berni A A, Gehring T, Nielsen B M, Händchen V, Paris M G A and Andersen U L 2015 Nat. Photon.9 577 [12] Gillard N, Belin E and Chapeau-Blondeau F 2017 Phys. Lett. A381 2621 [13] Metwally N and Hassan S S 2017 Laser Phys. Lett.14 115204 [14] Gagatsos C N, Bash B A, Guha S and Datta A 2017 Phys. Rev. A96 062306 [15] Yang Y, Liu X B, Wang J C and Jing J L 2018 Quantum. Inf. Process.17 54 [16] Yu X, Zhao X, Shen L Y, Shao Y Y, Liu J and Wang X G 2018 Opt. Express26 16292 [17] Jing X X, Liu J, Xiong H N and Wang X G 2015 Phys. Rev. A92 012312 [18] Berrada K 2016 Quantum. Inf. Process.15 4897 [19] Górecka A, Pollock F A, Liuzzo-Scorpo P, Nichols R, Adesso G and Modi K 2018 New J. Phys.20 083008 [20] Feng X N and Wei L F 2017 Sci. Rep.7 15492 [21] Pezzé L and Smerzi A 2009 Phys. Rev. Lett.102 100401 [22] Ren Z H, Li Y, Li Y N and Li W D 2019 Acta. Phys. Sin.68 040601 (in Chinese) [23] Taylor M A and Bowen W P 2016 Phys. Rep.615 1 [24] Giowannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett.96 010401 [25] Demkowicz-Dobrzański R and Maccone L 2014 Phys. Rev. Lett.113 250801 [26] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett.79 3865 [27] Kacprowicz M, Demkowicz-Dobrzański R, Wasilewski W, Banaszek K and Walmsley I A 2010 Nat. Photon.4 357 [28] Chaves R, Brask J B, Markiewicz M, Kolodyński J and Acín A 2013 Phys. Rev. Lett.111 120401 [29] Dinani H T and Berry D W 2014 Phys. Rev. A90 023856 [30] Hyllus P, Gühne O and Smerzi A 2010 Phys. Rev. A82 012337 [31] Sahota J and Quesada N 2015 Phys. Rev. A91 013808 [32] Huang J, Guo Y N and Xie Q 2016 Chin. Phys. B25 020303 [33] Yan K, Xie Y Q, Huang Y M and Hao X 2017 Commun. Theor. Phys.67 261 [34] Lin D P, Liu Y and Zou H M 2018 Chin. Phys. B27 110303 [35] Ji Y H, Ke Q and Hu J J 2020 Chin. Phys. B29 120303 [36] Gammelmark S and Mølmer K 2014 Phys. Rev. Lett.112 170401 [37] Kiilerich A H and Mølmer K 2015 Phys. Rev. A91 012119 [38] Dinani H T, Gupta M K, Dowling J P and Berry D W 2016 Phys. Rev. A93 063804 [39] Mogilevtsev D, Garusov E, Korolkov M V, Shatokhin V N and Cavalcanti S B 2018 Phys. Rev. A98 042116 [40] Guo L S, Xu B M, Zou J and Shao B 2015 Phys. Rev. A92 052112 [41] Farajollahi B, Jafarzadeh M, Rangani Jahromi H and Amniat-Talab M 2018 Quantum. Inf. Process.17 119 [42] Zhao Z X, Pan Q Y and Jing J L 2020 Phys. Rev. D101 056014 [43] Xie D, Xu C L and Wang A M 2017 Quantum. Inf. Process.16 155 [44] Razavian S, Benedetti C, Bina M, Akbari-Kourbolagh Y and Paris M G A 2019 Eur. Phys. J. Plus134 284 [45] Zhu W L, Wu W and Luo H G 2020 Chin. Phys. B29 020501 [46] Rangani Jahromi H 2020 Phys. Scr.95 035107 [47] Gebbia F, Benedetti C, Benatti F, Floreanini R, Bina M and Paris M G A 2020 Phys. Rev. A101 032112 [48] Srikanth R and Banerjee S 2008 Phys. Rev. A77 012318 [49] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett.104 103602 [50] Zhang X X, Yang Y X and Wang X B 2013 Phys. Rev. A88 013838 [51] Szigeti S S, Tonekaboni B, Lau W Y S, Hood S N and Haine S A 2014 Phys. Rev. A90 063630 [52] Wu S X, Yu C S and Song H S 2015 Phys. Lett. A379 1228 [53] Liu P, Wang P, Yang W, Jin G R and Sun C P 2017 Phys. Rev. A95 023824 [54] Milburn G J, Chen W Y and Jones K R 1994 Phys. Rev. A50 801 [55] Chiribella G, D'Ariano G M and Sacchi M F 2006 Phys. Rev. A73 062103 [56] Gaiba R and Paris M G A 2009 Phys. Lett. A373 934 [57] Genoni M G, Invernizzi C and Paris M G A 2009 Phys. Rev. A80 033842 [58] šafránek D, Lee A R and Fuentes I 2015 New J. Phys.17 073016 [59] šafránek D and Fuentes I 2016 Phys. Rev. A94 062313 [60] Rigovacca L, Farace A, Souza L, De Pasquale A, Giovannetti V and Adesso G 2017 Phys. Rev. A95 052331 [61] Predko A, Albarelli F and Serafini A 2020 Phys. Lett. A384 126268 [62] Purcell E M, Bloembergen N and Pound R V 1946 Phys. Rev.70 988 [63] Helstron C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) [64] Holevo A S 1982 Probabilistic and statistical aspects of quantum theory (Amsterdam: North Holland) [65] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A87 022337 [66] Jozsa R 1994 J. Mod. Opt.41 2315 [67] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [68] Zhu C J, Ping L L, Yang Y P and Agarwal G S 2020 Phys. Rev. Lett.124 073602 [69] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A75 062336 [70] Aharonov Y, Massar S and Popescu S 2002 Phys. Rev. A66 052107 [71] Liao X P, Fang M F and Zhou X 2017 Quantum. Inf. Process.16 241
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.