Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 050304    DOI: 10.1088/1674-1056/ac364f
GENERAL Prev   Next  

Environmental parameter estimation with the two-level atom probes

Mengmeng Luo(罗萌萌)1, Wenxiao Liu(刘文晓)2, Yuetao Chen(陈悦涛)1, Shangbin Han(韩尚斌)1, and Shaoyan Gao(高韶燕)1,†
1 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China;
2 Department of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
Abstract  A novel scheme is proposed to estimate three environmental parameters, the detuning, the temperature and the squeezing strength with one-qubit or two-qubit probes. Quantum Fisher information and the fidelity of the atom probes are calculated. When the detuning between the frequency of cavity field and the atomic transition frequency is estimated, the dynamics of quantum Fisher information shows oscillatory and rising behaviors. To estimate the temperature of the thermal reservoir, the one-qubit probe with the superposition initial state is more favorable than the two-qubit probe with the entangled initial state. When the squeezing strength of the squeezed vacuum reservoir is estimated, we find that the estimation precision is significantly improved by utilizing the two-qubit probe with the maximal entangled initial state. Our work provides a potential application in the open quantum system and quantum information processing.
Keywords:  quantum parameter estimation      quantum Fisher information      Jaynes-Cummings model      quantum reservoir theory  
Received:  16 August 2021      Revised:  29 October 2021      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  06.20.-f (Metrology)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.91536115 and 11534008) and Natural Science Foundation of Shaanxi Province,China (Grant No.2016JM1005).
Corresponding Authors:  Shaoyan Gao,E-mail:gaosy@xjtu.edu.cn     E-mail:  gaosy@xjtu.edu.cn
About author:  2021-11-4

Cite this article: 

Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕) Environmental parameter estimation with the two-level atom probes 2022 Chin. Phys. B 31 050304

[1] Geononi M G, Olivares S and Paris M G A 2011 Phys. Rev. Lett. 106 153603
[2] Demkowicz-Dobrzański R 2011 Phys. Rev. A 83 061802(R)
[3] Chwedeńczuk J, Piazza F and Smerzi A 2011 New J. Phys. 13 065023
[4] Pinel O, Jian P, Treps N, Fabre C and Braun A D 2013 Phys. Rev. A 88 040102(R)
[5] Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310
[6] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[7] Yao Y, Ge L, Xiao X, Wang X G and Sun C P 2014 Phys. Rev. A 90 022327
[8] He Z and Yao C M 2014 Chin. Phys. B 23 110601
[9] Li Y L, Xiao X and Yao Y 2015 Phys. Rev. A 91 052105
[10] Chapeau-Blondeau F 2015 Phys. Rev. A 91 052310
[11] Berni A A, Gehring T, Nielsen B M, Händchen V, Paris M G A and Andersen U L 2015 Nat. Photon. 9 577
[12] Gillard N, Belin E and Chapeau-Blondeau F 2017 Phys. Lett. A 381 2621
[13] Metwally N and Hassan S S 2017 Laser Phys. Lett. 14 115204
[14] Gagatsos C N, Bash B A, Guha S and Datta A 2017 Phys. Rev. A 96 062306
[15] Yang Y, Liu X B, Wang J C and Jing J L 2018 Quantum. Inf. Process. 17 54
[16] Yu X, Zhao X, Shen L Y, Shao Y Y, Liu J and Wang X G 2018 Opt. Express 26 16292
[17] Jing X X, Liu J, Xiong H N and Wang X G 2015 Phys. Rev. A 92 012312
[18] Berrada K 2016 Quantum. Inf. Process. 15 4897
[19] Górecka A, Pollock F A, Liuzzo-Scorpo P, Nichols R, Adesso G and Modi K 2018 New J. Phys. 20 083008
[20] Feng X N and Wei L F 2017 Sci. Rep. 7 15492
[21] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[22] Ren Z H, Li Y, Li Y N and Li W D 2019 Acta. Phys. Sin. 68 040601 (in Chinese)
[23] Taylor M A and Bowen W P 2016 Phys. Rep. 615 1
[24] Giowannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[25] Demkowicz-Dobrzański R and Maccone L 2014 Phys. Rev. Lett. 113 250801
[26] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[27] Kacprowicz M, Demkowicz-Dobrzański R, Wasilewski W, Banaszek K and Walmsley I A 2010 Nat. Photon. 4 357
[28] Chaves R, Brask J B, Markiewicz M, Kolodyński J and Acín A 2013 Phys. Rev. Lett. 111 120401
[29] Dinani H T and Berry D W 2014 Phys. Rev. A 90 023856
[30] Hyllus P, Gühne O and Smerzi A 2010 Phys. Rev. A 82 012337
[31] Sahota J and Quesada N 2015 Phys. Rev. A 91 013808
[32] Huang J, Guo Y N and Xie Q 2016 Chin. Phys. B 25 020303
[33] Yan K, Xie Y Q, Huang Y M and Hao X 2017 Commun. Theor. Phys. 67 261
[34] Lin D P, Liu Y and Zou H M 2018 Chin. Phys. B 27 110303
[35] Ji Y H, Ke Q and Hu J J 2020 Chin. Phys. B 29 120303
[36] Gammelmark S and Mølmer K 2014 Phys. Rev. Lett. 112 170401
[37] Kiilerich A H and Mølmer K 2015 Phys. Rev. A 91 012119
[38] Dinani H T, Gupta M K, Dowling J P and Berry D W 2016 Phys. Rev. A 93 063804
[39] Mogilevtsev D, Garusov E, Korolkov M V, Shatokhin V N and Cavalcanti S B 2018 Phys. Rev. A 98 042116
[40] Guo L S, Xu B M, Zou J and Shao B 2015 Phys. Rev. A 92 052112
[41] Farajollahi B, Jafarzadeh M, Rangani Jahromi H and Amniat-Talab M 2018 Quantum. Inf. Process. 17 119
[42] Zhao Z X, Pan Q Y and Jing J L 2020 Phys. Rev. D 101 056014
[43] Xie D, Xu C L and Wang A M 2017 Quantum. Inf. Process. 16 155
[44] Razavian S, Benedetti C, Bina M, Akbari-Kourbolagh Y and Paris M G A 2019 Eur. Phys. J. Plus 134 284
[45] Zhu W L, Wu W and Luo H G 2020 Chin. Phys. B 29 020501
[46] Rangani Jahromi H 2020 Phys. Scr. 95 035107
[47] Gebbia F, Benedetti C, Benatti F, Floreanini R, Bina M and Paris M G A 2020 Phys. Rev. A 101 032112
[48] Srikanth R and Banerjee S 2008 Phys. Rev. A 77 012318
[49] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[50] Zhang X X, Yang Y X and Wang X B 2013 Phys. Rev. A 88 013838
[51] Szigeti S S, Tonekaboni B, Lau W Y S, Hood S N and Haine S A 2014 Phys. Rev. A 90 063630
[52] Wu S X, Yu C S and Song H S 2015 Phys. Lett. A 379 1228
[53] Liu P, Wang P, Yang W, Jin G R and Sun C P 2017 Phys. Rev. A 95 023824
[54] Milburn G J, Chen W Y and Jones K R 1994 Phys. Rev. A 50 801
[55] Chiribella G, D'Ariano G M and Sacchi M F 2006 Phys. Rev. A 73 062103
[56] Gaiba R and Paris M G A 2009 Phys. Lett. A 373 934
[57] Genoni M G, Invernizzi C and Paris M G A 2009 Phys. Rev. A 80 033842
[58] šafránek D, Lee A R and Fuentes I 2015 New J. Phys. 17 073016
[59] šafránek D and Fuentes I 2016 Phys. Rev. A 94 062313
[60] Rigovacca L, Farace A, Souza L, De Pasquale A, Giovannetti V and Adesso G 2017 Phys. Rev. A 95 052331
[61] Predko A, Albarelli F and Serafini A 2020 Phys. Lett. A 384 126268
[62] Purcell E M, Bloembergen N and Pound R V 1946 Phys. Rev. 70 988
[63] Helstron C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press)
[64] Holevo A S 1982 Probabilistic and statistical aspects of quantum theory (Amsterdam: North Holland)
[65] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[66] Jozsa R 1994 J. Mod. Opt. 41 2315
[67] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[68] Zhu C J, Ping L L, Yang Y P and Agarwal G S 2020 Phys. Rev. Lett. 124 073602
[69] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336
[70] Aharonov Y, Massar S and Popescu S 2002 Phys. Rev. A 66 052107
[71] Liao X P, Fang M F and Zhou X 2017 Quantum. Inf. Process. 16 241
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[3] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[4] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[5] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[6] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[7] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(11): 114207.
[10] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[11] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[12] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[13] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[14] Atom-field entanglement in the Jaynes–Cummings modelwithout rotating wave approximation
M. Mirzaee, M. Batavani. Chin. Phys. B, 2015, 24(4): 040306.
[15] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
No Suggested Reading articles found!