Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057803    DOI: 10.1088/1674-1056/ac380c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exciton luminescence and many-body effect of monolayer WS2 at room temperature

Jian-Min Wu(吴建民)1, Li-Hui Li(黎立辉)1, Wei-Hao Zheng(郑玮豪)2, Bi-Yuan Zheng(郑弼元)2, Zhe-Yuan Xu(徐哲元)2, Xue-Hong Zhang(张学红)2, Chen-Guang Zhu(朱晨光)2, Kun Wu(吴琨)1, Chi Zhang(张弛)1, Ying Jiang(蒋英)1, Xiao-Li Zhu(朱小莉)1, and Xiu-Juan Zhuang(庄秀娟)1,†
1 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  Monolayer transition metal dichalcogenides favor the formation of a variety of excitonic quasiparticles, and can serve as an ideal material for exploring room-temperature many-body effects in two-dimensional systems. Here, using mechanically exfoliated monolayer WS2 and photoluminescence (PL) spectroscopy, exciton emission peaks are confirmed through temperature-dependent and electric-field-tuned PL spectroscopy. The dependence of exciton concentration on the excitation power density at room temperature is quantitatively analyzed. Exciton concentrations covering four orders of magnitude are divided into three stages. Within the low carrier concentration stage, the system is dominated by excitons, with a small fraction of trions and localized excitons. At the high carrier concentration stage, the localized exciton emission from defects coincides with the emission peak position of trions, resulting in broad spectral characteristics at room temperature.
Keywords:  transition metal dichalcogenides      photoluminescence      localized exciton      exciton density  
Received:  23 June 2021      Revised:  05 November 2021      Accepted manuscript online: 
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61635001,52072117,and 51972105).
Corresponding Authors:  Xiu-Juan Zhuang,E-mail:zhuangxj@hnu.edu.cn     E-mail:  zhuangxj@hnu.edu.cn
About author:  2021-11-10

Cite this article: 

Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟) Exciton luminescence and many-body effect of monolayer WS2 at room temperature 2022 Chin. Phys. B 31 057803

[1] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136085
[3] Ramasubramaniam A 2012 Phys. Rev. B 86 115409
[4] Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Commun. 4 1474
[5] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318
[6] You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R and Heinz T F 2015 Nat. Phys. 11 477
[7] He Z, Xu W, Zhou Y, Wang X, Sheng Y, Rong Y, Guo S, Zhang J, Smith J M and Warner J H 2016 ACS Nano 10 2176
[8] Singh A, Moody G, Wu S, Wu Y, Ghimire N J, Yan J, Mandrus D G, Xu X and Li X 2014 Phys. Rev. Lett. 112 216804
[9] Li L, Zheng W, Ma C, Zhao H, Jiang F, Ouyang Y, Zheng B, Fu X, Fan P, Zheng M, Li Y, Xiao Y, Cao W, Jiang Y, Zhu X, Zhuang X and Pan A 2020 Nano Lett. 20 3361
[10] Zhu B, Chen X and Cui X 2015 Sci. Rep. 5 9218
[11] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802
[12] He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803
[13] Xiao K, Yan T, Liu Q, Yang S, Kan C, Duan R, Liu Z and Cui X 2021 J. Phys. Chem. Lett. 12 2555
[14] Lin T N, Santiago S R M, Caigas S P, Yuan C T, Lin T Y, Shen J L and Chen Y F 2019 npj 2D Mater. Appl. 3 46
[15] Carmiggelt J J, Borst M and van der Sar T 2020 Sci. Rep. 10 17389
[16] Feierabend M, Brem S, Ekman A and Malic E 2020 2D Mater. 8 015013
[17] Zhou Y, Scuri G, Wild D S, High A A, Dibos A, Jauregui L A, Shu C, De Greve K, Pistunova K, Joe A Y, Taniguchi T, Watanabe K, Kim P, Lukin M D and Park H 2017 Nat. Nanotech. 12 856
[18] Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[19] Selig M, Berghäuser G, Richter M, Bratschitsch R, Knorr A and Malic E 2018 2D Mater. 5 035017
[20] Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M and Koratkar N 2015 ACS Nano 9 1520
[21] Ayari S, Smiri A, Hichri A, Jaziri S and Amand T 2018 Phys. Rev. B 98 205430
[22] Grim J Q, Christodoulou S, Di Stasio F, Krahne R, Cingolani R, Manna L and Moreels I 2014 Nat. Nanotech. 9 891
[23] Wen W, Wu L and Yu T 2020 ACS Mater. Lett. 2 1328
[24] Dwedari M, Brem S, Feierabend M and Malic E 2019 Phys. Rev. Mater. 3 074004
[25] Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H and Kim J 2016 ACS Nano 10 2399
[26] Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C, Schüller C and Korn T 2015 Physica Status Solidi (RRL)-Rapid Research Letters 9 457
[27] Okada M, Miyauchi Y, Matsuda K, Taniguchi T, Watanabe K, Shinohara H and Kitaura R 2017 Sci. Rep. 7 322
[28] Barbone M, Montblanch A R, Kara D M, Palacios-Berraquero C, Cadore A R, De Fazio D, Pingault B, Mostaani E, Li H, Chen B, Watanabe K, Taniguchi T, Tongay S, Wang G, Ferrari A C and Atature M 2018 Nat. Commun. 9 3721
[29] Siviniant J, Scalbert D, Kavokin A V, Coquillat D and Lascaray J P 1999 Phys. Rev. B 59 1602
[30] Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M and Yu T 2015 ACS Nano 9 647
[31] Mitioglu A A, Plochocka P, Jadczak J N, Escoffier W, Rikken G L J A, Kulyuk L and Maude D K 2013 Phys. Rev. B 88 245403
[32] Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207
[33] Peimyoo N, Yang W, Shang J, Shen X, Wang Y and Yu T 2014 ACS Nano 8 11320
[34] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F 2015 Phys. Rev. Lett. 115 126802
[35] Phillips R T, Lovering D J, Denton G J and Smith G W 1992 Phys. Rev. B 45 4308
[36] Vietmeyer F, Frantsuzov P A, Janko B and Kuno M 2011 Phys. Rev. B 83 115319
[37] Wei S, Lin M L, Tan Q H, Qiao X F and Tan P H 2016 2D Mater. 3 025016
[38] Zheng W, Zheng B, Jiang Y, Yan C, Chen S, Liu Y, Sun X, Zhu C, Qi Z, Yang T, Huang W, Fan P, Jiang F, Wang X, Zhuang X, Li D, Li Z, Xie W, Ji W, Wang X and Pan A 2019 Nano Lett. 19 7217
[39] Fan P, Zheng B Y, Sun X X, Zheng W H, Xu Z Y, Ge C H, Liu Y, Zhuang X J, Li D, Wang X, Zhu X L, Jiang Y and Pan A L 2019 J. Phys. Chem. Lett. 10 3763
[40] Mouri S, Miyauchi Y, Toh M, Zhao W, Eda G and Matsuda K 2014 Phys. Rev. B 90 155449
[41] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H 2014 Phys. Rev. B 89 125427
[42] Salehzadeh O, Tran N H, Liu X, Shih I and Mi Z 2014 Nano Lett. 14 4125
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[10] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[13] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
No Suggested Reading articles found!