CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material |
Bo-Shen Zhou(周博深)1,2, Hao-Ran Gao(高浩然)1,2, Yu-Chen Liu(刘雨辰)1,2, Zi-Mu Li(李子木)1,2, Yang-Yang Huang(黄阳阳)1,2, Fu-Chun Liu(刘福春)1,†, and Xiao-Chun Wang(王晓春)1 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 College of Physics, Jilin University, Changchun 130012, China |
|
|
Abstract The 52% energy of the solar radiation is contributed by near-infrared radiation (NIR, 780-2500 nm). Therefore, the material design for the energy-saving smart window, which can effectively shield NIR and has acceptable visible transmittance, is vital to save the energy consumed on the temperature control system. It is important to find a non-toxic stable material with excellent NIR-shielding ability and acceptable visible transmittance. The systematic first-principles study on LixSnyWO3 (x=0, 0.33, 0.66, and y=0, 0.33) exhibits that the chemical stability is a positive correlation with the doping concentration. After doping, the Fermi-energy upshifts into the conduction band, and the material shows metal-like characteristics. Therefore, these structures LixSnyWO3 (except the structure with x=0.33 and y=0) show pronounced improvement of NIR shielding ability. Our results indicate that when x=0 and y=0.33, the material exhibits the strongest NIR-shielding ability, satisfying chemical stability, wide NIR-shielding range (780-2500 nm), and acceptable visible transmittance. This work provides a good choice for experimental study on NIR shielding material for the energy-saving window.
|
Received: 16 June 2021
Revised: 28 February 2022
Accepted manuscript online:
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
88.40.fh
|
(Advanced materials development)
|
|
95.85.Jq
|
(Near infrared (0.75-3 μm))
|
|
Corresponding Authors:
Fu-Chun Liu,E-mail:lfc@jlu.edu.cn
E-mail: lfc@jlu.edu.cn
|
About author: 2022-3-2 |
Cite this article:
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春) First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material 2022 Chin. Phys. B 31 057804
|
[1] Bechinger C, Ferrere S, Zaban A, Sprague J and Gregg B A 1996 Nature 383 608 [2] Zhao Y Z, Jia H J, Zhao S N, Wang Y B, Li H Y, Zhao Z L, Wu Y X and Wang X C 2020 Physica E 117 113817 [3] Yu H X, Mu H M, Zhu D R, Zhang Y, Wang X C and Zhang S 2019 Int. J. Hydrogen Energ 44 19920 [4] Mu H m, Yu H X, Zhu D R, Zhao S N and Wang X C 2019 Applied Surface Science 498 143823 [5] Li J P, Jia H J, Zhu D R, Wang X C, Liu F C and Yang Y J 2019 Applied Surface Science 463 918 [6] Zhao L S, Chen C P, Liu L L, Yu H X, Chen Y and Wang X C 2018 Chin. Phys. B 27 016301 [7] Jia H J, Mu H M, Li J P, Zhao Y Z, Wu Y X and Wang X C 2018 Phys. Chem. Chem. Phys. 20 26288 [8] Zhao L S, Wang Y, Chen C P, Liu L L, Yu H X, Zhang Y, Chen Y and Wang X C 2017 Physica E 91 82 [9] Liu L L, Chen C P, Zhao L S, Wang Y and Wang X C 2017 Carbon 115 773 [10] Jelle B P, Hynd A, Gustavsen A, Arasteh D, Goudey H and Hart R 2012 Solar Energy Materials and Solar Cells 96 1 [11] Levinson R, Berdahl P and Akbari H 2005 Solar Energy Materials and Solar Cells 89 319 [12] Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A, Maple M and Keilmann F 2007 Science 318 1750 [13] Xiao L, Su Y, Qiu W, Ran J, Liu Y, Wu J, Lu F, Shao F and Peng P 2016 Appl. Phys. Lett. 109 193906 [14] Chao L, Bao L, Wei W, O T and Zhang Z 2016 J. Alloys Compd. 672 419 [15] Takeda H, Kuno H and Adachi K 2008 J. Am. Chem. Soc. 91 2897 [16] Kanehara M, Koike H, Yoshinaga T and Teranishi T 2009 J. Am. Chem. Soc. 131 17736 [17] Pattathil P, Giannuzzi R and Manca M 2016 Nano Energy 30 242 [18] Xu Q, Xiao L, Ran J, Tursun R, Zhou G, Deng L, Tang D, Shu Q, Qin J, Lu G and Peng P 2018 J. Appl. Phys. 124 193102 [19] Yang C, Chen J F, Zeng X, Cheng D and Cao D 2014 Industrial & Engineering Chemistry Research 53 17981 [20] Guo C, Yin S, Sato T and Priya S 2012 Journal of the American Ceramic Society 95 1634 [21] Lee Y, Lee T, Jang W and Soon A 2016 Chemistry of Materials 28 4528 [22] Guo C, Yin S, Dong Q, Kimura T, Tanaka M, Hang le T, Wu X and Sato T 2013 J. Nanosci. Nanotechnol. 13 3236 [23] Ran S, Liu J, Shi F, Fan C, Chen B, Zhang H, Yu L and Liu S H 2018 Solar Energy Materials and Solar Cells 174 342 [24] Guo C, Yin S, Yan M and Sato T 2011 Journal of Materials Chemistry 21 5099 [25] Gao Y, Wang F, Huang W, Yang C, Guo W, Song C, Zhang Q, Yang B, Xu Y and Guo C 2019 Nanoscale 11 3300 [26] Adachi K, Ota Y, Tanaka H, Okada M, Oshimura N and Tofuku A 2013 J. Appl. Phys. 114 194304 [27] Adachi K and Asahi T 2012 Journal of Materials Research 27 965 [28] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264 [29] Lang Z Z, Liu X Q and Chen X M 2021 Chin. Phys. Lett. 38 047701 [30] Yang C, Chen J F, Zeng X, Cheng D, Huan H and Cao D 2016 Nanotechnology 27 075203 [31] Gajdoš M, Hummer K, Kresse G, Furthmöller J and Bechstedt F 2006 Phys. Rev. B 73 045112 [32] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [34] Vanderbilt D 1990 Phys. Rev. B 41 7892 [35] Gerand B, Nowogrocki G, Guenot J and Figlarz M 1979 Journal of Solid State Chemistry 29 429 [36] Cheng K, Jacobson A and Whittingham M 1981 Solid State Ionics 5 355 [37] Ingham B, Hendy S C, Chong S V and Tallon J L 2005 Phys. Rev. B 72 045112 [38] Khyzhun O Y, Solonin Y M and Dobrovolsky V 2001 J. Alloys Compd. 320 1 [39] Goodenough J B 1971 Progress in Solid State Chemistry 5 145 [40] Granqvist C G 2000 Solar Energy Materials and Solar Cells 60 201 [41] Sheardy A T, Arvapalli D M and Wei J 2020 Nanoscale Advances 2 1054 [42] Sun J, Wang H T, He J and Tian Y 2005 Phys. Rev. B 71 125132 [43] Liu C, Shu Q, Qin J, Yuan Y, Qiu W, Peng P and Xiao L 2019 AIP Advances 9 115014 [44] Kim J, Jhi S H and Ryeol Lee K 2011 J. Appl. Phys. 110 083501 [45] Yang J Y, Xu M and Liu L H 2016 Journal of Quantitative Spectroscopy and Radiative Transfer 184 111 [46] Mendoza-Galván A and González-Hernández J 2000 J. Appl. Phys. 87 760 [47] Xue Y, Zhang Y and Zhang P 2009 Phys. Rev. B 79 205113 [48] Yamada Y, Tajima K, Bao S, Okada M and Yoshimura K 2009 Solid State Ionics 180 659 [49] Peña-Rodríguez O 2017 J. Alloys Compd. 694 857 [50] Yang H, Sun H, Li Q, Li P, Song K, Song B and Wang L 2019 Vacuum 164 411 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|