Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057804    DOI: 10.1088/1674-1056/ac598a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material

Bo-Shen Zhou(周博深)1,2, Hao-Ran Gao(高浩然)1,2, Yu-Chen Liu(刘雨辰)1,2, Zi-Mu Li(李子木)1,2, Yang-Yang Huang(黄阳阳)1,2, Fu-Chun Liu(刘福春)1,†, and Xiao-Chun Wang(王晓春)1
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 College of Physics, Jilin University, Changchun 130012, China
Abstract  The 52% energy of the solar radiation is contributed by near-infrared radiation (NIR, 780-2500 nm). Therefore, the material design for the energy-saving smart window, which can effectively shield NIR and has acceptable visible transmittance, is vital to save the energy consumed on the temperature control system. It is important to find a non-toxic stable material with excellent NIR-shielding ability and acceptable visible transmittance. The systematic first-principles study on LixSnyWO3 (x=0, 0.33, 0.66, and y=0, 0.33) exhibits that the chemical stability is a positive correlation with the doping concentration. After doping, the Fermi-energy upshifts into the conduction band, and the material shows metal-like characteristics. Therefore, these structures LixSnyWO3 (except the structure with x=0.33 and y=0) show pronounced improvement of NIR shielding ability. Our results indicate that when x=0 and y=0.33, the material exhibits the strongest NIR-shielding ability, satisfying chemical stability, wide NIR-shielding range (780-2500 nm), and acceptable visible transmittance. This work provides a good choice for experimental study on NIR shielding material for the energy-saving window.
Keywords:  density functional theory      electronic structure      near-infrared radiation shielding material  
Received:  16 June 2021      Revised:  28 February 2022      Accepted manuscript online: 
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  88.40.fh (Advanced materials development)  
  95.85.Jq (Near infrared (0.75-3 μm))  
Corresponding Authors:  Fu-Chun Liu,E-mail:lfc@jlu.edu.cn     E-mail:  lfc@jlu.edu.cn
About author:  2022-3-2

Cite this article: 

Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春) First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material 2022 Chin. Phys. B 31 057804

[1] Bechinger C, Ferrere S, Zaban A, Sprague J and Gregg B A 1996 Nature 383 608
[2] Zhao Y Z, Jia H J, Zhao S N, Wang Y B, Li H Y, Zhao Z L, Wu Y X and Wang X C 2020 Physica E 117 113817
[3] Yu H X, Mu H M, Zhu D R, Zhang Y, Wang X C and Zhang S 2019 Int. J. Hydrogen Energ 44 19920
[4] Mu H m, Yu H X, Zhu D R, Zhao S N and Wang X C 2019 Applied Surface Science 498 143823
[5] Li J P, Jia H J, Zhu D R, Wang X C, Liu F C and Yang Y J 2019 Applied Surface Science 463 918
[6] Zhao L S, Chen C P, Liu L L, Yu H X, Chen Y and Wang X C 2018 Chin. Phys. B 27 016301
[7] Jia H J, Mu H M, Li J P, Zhao Y Z, Wu Y X and Wang X C 2018 Phys. Chem. Chem. Phys. 20 26288
[8] Zhao L S, Wang Y, Chen C P, Liu L L, Yu H X, Zhang Y, Chen Y and Wang X C 2017 Physica E 91 82
[9] Liu L L, Chen C P, Zhao L S, Wang Y and Wang X C 2017 Carbon 115 773
[10] Jelle B P, Hynd A, Gustavsen A, Arasteh D, Goudey H and Hart R 2012 Solar Energy Materials and Solar Cells 96 1
[11] Levinson R, Berdahl P and Akbari H 2005 Solar Energy Materials and Solar Cells 89 319
[12] Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A, Maple M and Keilmann F 2007 Science 318 1750
[13] Xiao L, Su Y, Qiu W, Ran J, Liu Y, Wu J, Lu F, Shao F and Peng P 2016 Appl. Phys. Lett. 109 193906
[14] Chao L, Bao L, Wei W, O T and Zhang Z 2016 J. Alloys Compd. 672 419
[15] Takeda H, Kuno H and Adachi K 2008 J. Am. Chem. Soc. 91 2897
[16] Kanehara M, Koike H, Yoshinaga T and Teranishi T 2009 J. Am. Chem. Soc. 131 17736
[17] Pattathil P, Giannuzzi R and Manca M 2016 Nano Energy 30 242
[18] Xu Q, Xiao L, Ran J, Tursun R, Zhou G, Deng L, Tang D, Shu Q, Qin J, Lu G and Peng P 2018 J. Appl. Phys. 124 193102
[19] Yang C, Chen J F, Zeng X, Cheng D and Cao D 2014 Industrial & Engineering Chemistry Research 53 17981
[20] Guo C, Yin S, Sato T and Priya S 2012 Journal of the American Ceramic Society 95 1634
[21] Lee Y, Lee T, Jang W and Soon A 2016 Chemistry of Materials 28 4528
[22] Guo C, Yin S, Dong Q, Kimura T, Tanaka M, Hang le T, Wu X and Sato T 2013 J. Nanosci. Nanotechnol. 13 3236
[23] Ran S, Liu J, Shi F, Fan C, Chen B, Zhang H, Yu L and Liu S H 2018 Solar Energy Materials and Solar Cells 174 342
[24] Guo C, Yin S, Yan M and Sato T 2011 Journal of Materials Chemistry 21 5099
[25] Gao Y, Wang F, Huang W, Yang C, Guo W, Song C, Zhang Q, Yang B, Xu Y and Guo C 2019 Nanoscale 11 3300
[26] Adachi K, Ota Y, Tanaka H, Okada M, Oshimura N and Tofuku A 2013 J. Appl. Phys. 114 194304
[27] Adachi K and Asahi T 2012 Journal of Materials Research 27 965
[28] Naik G V, Shalaev V M and Boltasseva A 2013 Adv. Mater. 25 3264
[29] Lang Z Z, Liu X Q and Chen X M 2021 Chin. Phys. Lett. 38 047701
[30] Yang C, Chen J F, Zeng X, Cheng D, Huan H and Cao D 2016 Nanotechnology 27 075203
[31] Gajdoš M, Hummer K, Kresse G, Furthmöller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[32] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Vanderbilt D 1990 Phys. Rev. B 41 7892
[35] Gerand B, Nowogrocki G, Guenot J and Figlarz M 1979 Journal of Solid State Chemistry 29 429
[36] Cheng K, Jacobson A and Whittingham M 1981 Solid State Ionics 5 355
[37] Ingham B, Hendy S C, Chong S V and Tallon J L 2005 Phys. Rev. B 72 045112
[38] Khyzhun O Y, Solonin Y M and Dobrovolsky V 2001 J. Alloys Compd. 320 1
[39] Goodenough J B 1971 Progress in Solid State Chemistry 5 145
[40] Granqvist C G 2000 Solar Energy Materials and Solar Cells 60 201
[41] Sheardy A T, Arvapalli D M and Wei J 2020 Nanoscale Advances 2 1054
[42] Sun J, Wang H T, He J and Tian Y 2005 Phys. Rev. B 71 125132
[43] Liu C, Shu Q, Qin J, Yuan Y, Qiu W, Peng P and Xiao L 2019 AIP Advances 9 115014
[44] Kim J, Jhi S H and Ryeol Lee K 2011 J. Appl. Phys. 110 083501
[45] Yang J Y, Xu M and Liu L H 2016 Journal of Quantitative Spectroscopy and Radiative Transfer 184 111
[46] Mendoza-Galván A and González-Hernández J 2000 J. Appl. Phys. 87 760
[47] Xue Y, Zhang Y and Zhang P 2009 Phys. Rev. B 79 205113
[48] Yamada Y, Tajima K, Bao S, Okada M and Yoshimura K 2009 Solid State Ionics 180 659
[49] Peña-Rodríguez O 2017 J. Alloys Compd. 694 857
[50] Yang H, Sun H, Li Q, Li P, Song K, Song B and Wang L 2019 Vacuum 164 411
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[5] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!