Abstract The alloying and magnetic disordering effects on site occupation, elastic property, and phase stability of CoGa (, V, and Ni) shape memory alloys are systematically investigated using the first-principles exact muffin-tin orbitals method. It is shown that with the increasing magnetic disordering degree , their tetragonal shear elastic constant (i.e., ) of the phase decreases whereas the elastic anisotropy increases, and upon tetragonal distortions the cubic phase gets more and more unstable. CoCrGa and CoVGa alloys with thus can show the martensitic transformation (MT) from to as well as CoNiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the ferromagnetism state, the excessive Ga atoms always tend to take the sublattices, whereas the excessive Co atom favor the sites when , and the excessive atoms prefer the Co sites when . The Ga-deficient alloys can also occur the MT at the ferromagnetism state by means of Co or V doping, and the MT temperature should increase with their addition. In the corresponding ferromagnetism alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from to is promoted and then for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic state. At the ferromagnetism state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as and Ga.
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12174269,11674233 and 51301176),the China Postdoctoral Science Foundation (Grant Nos.2013M530133 and 2014T70264),and the Natural Science Foundation of Liaoning Province,China (Grant Nos.2019-MS-287 and L201602672).
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍) Alloying and magnetic disordering effects on phase stability of Co2YGa (Y=Cr, V, and Ni) alloys: A first-principles study 2022 Chin. Phys. B 31 056105
[1] Wuttig M, Li J and Craciunescu C 2001Scr. Mater.44 2393 [2] Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y and Garay A 2010Acta Mater.58 5220 [3] Xu X, Nagasako M, Kataoka M, Umetsu R Y, Omori T, Kanomata T and Kainuma R 2015Phys. Rev. B91 104434 [4] Odaira T, Xu X, Miyake A, Omori T, Tokunaga M and Kainuma R 2018Scr. Mater.153 35 [5] Liu C Q, Li Z, Zhang Y L, Huang Y S, Ye M F, Sun X D, Zhang G J, Cao Y M, Xu K and Jing C 2018Appl. Phys. Lett.112 211903 [6] Xu X, Nagashima A, Nagasako M, Omori T, Kanomata T and Kainuma R 2017Appl. Phys. Lett.110 121906 [7] Obaidallah A, Algethami A, Zhang Q Q, Tan J G, Wang X T, Liu Z H and Ma X Q 2020J. Magn. Magn. Mater.498 166252 [8] Huang Y, Jing C, Li J, Zhang Y, Zhang G and Qin N 2020J. Magn. Magn. Mater.513 167059 [9] Li C M, Zhou J P, Yang S J and Zhang Y 2021Comput. Mater. Sci.196 110527 [10] Jiang H X, Xu X, Omori T, Nagasako M, Ruan J J, Yang S Y, Wang C P, Liu X J and Kainuma R 2016Mater. Sci. Eng. A676 191 [11] Jiang H X, Wang C P, Xu W W, Xu X, Yang S Y, Kainuma R and Liu X J 2017Mater. Des.116 300 [12] Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K and Kainuma R 2013Appl. Phys. Lett.103 164104 [13] Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A and Entel P 2010Phys. Rev. B82 064420 [14] Singh N, Dogan E, Karaman I and Arróyave R 2011Phys. Rev. B84 184201 [15] Dogan E, Karaman I, Singh N, Chivukula A, Thawabi H S and Arróyave R 2012Acta Mater.60 3545 [16] Talapatra A, Arróyave R, Entel P, Valencia-Jaime I and Romero A H 2015Phys. Rev. B92 054107 [17] Sahay S and Goswami B 2009Solid State Phenom.150 197 [18] Craciunescu C, Kishi Y, Lograsso T A and Wutting M 2002Scr. Mater.47 285 [19] Li Y, Xin Y, Chai L, Ma Y and Xu H 2010Acta Mater.58 3655 [20] Xu X, Omori T, Nagasako M, Kanomata T and Kainuma R 2015Appl. Phys. Lett.107 181904 [21] Xin Y, Li Y, Jiang C B and Xu H B 2005Mater. Sci. Forum475-479 1991 [22] Seguí C, Pons J and Cesari E 2007Acta Mater.55 1649 [23] Hu Q M, Luo H B, Li C M, Vitos L and Yang R 2012Sci. China Tech. Sci.55 295 [24] Chen J, Li Y, Shang J X and Xu H B 2006Appl. Phys. Lett.89 231921 [25] Bungaro C, Rabe K M and Corso A Dal 2003Phys. Rev. B68 134104 [26] Stipcich M, Mañosa L, Planes A, Morin M, Zarestky J, Lograsso T and Stassis C 2004Phys. Rev. B70 054115 [27] Banik S, Ranjan R, Chakrabarti A, Bhardwaj S, Lalla N P, Awasthi A M, Sathe V, Phase D M, Mukhopadhyay P K, Pandey D and Barman S R 2007Phys. Rev. B75 104107 [28] Lanska N, Söderberg O, Sozinov A, Ge Y, Ullakko K and Lindroos V K 2004J. Appl. Phys.95 8074 [29] Li C M, Luo H B, Hu Q M, Yang R, Johansson B and Vitos L 2012Phys. Rev. B86 214205 [30] Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L and Lashley J C 2008Phys. Rev. Lett.100 165703 [31] Godlevsky V V and Rabe K M 2001Phys. Rev. B63 134407 [32] Vitos L 2007Computational Quantum Mechanics for Materials Engineers (London: Springer-Verlag) [33] Andersen O K, Jepsen O and Krier G 1994Lectures on Methods of Electronic Structure Calculations (Singapore: World Scientific) pp. 63-124 [34] Vitos L, Skriver H L, Johansson B and Kollár J 2000Comput. Mater. Sci.18 24 [35] Vitos L 2001Phys. Rev. B64 014107 [36] Zwierzycki M and Andersen O K 2009Acta Phys. Pol. A115 64 [37] Kollár J, Vitos L and Skriver H L 2000Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method (Berlin: Springer-Verlag) p. 85 [38] Soven P 1967Phys. Rev.156 809 [39] Vitos L, Abrikosov I A and Johansson B 2001Phys. Rev. Lett.87 156401 [40] Györffy B L 1972Phys. Rev. B5 2382 [41] Vitos L, Korzhavyi P A and Johansson B 2003Nat. Mater.2 25 [42] Kim D Y, Hong J and Vitos L 2014Phys. Rev. B90 144413 [43] Li C M, Yang R, Johansson B and Vitos L 2016Phys. Rev. B94 214108 [44] Li C M, Hu Y F, Feng W J and Huang R Z 2018Phys. Rev. B98 224107 [45] Li C M, Zhang Y, Feng W J, Huang R Z and Gao M 2020Phys. Rev. B101 054106 [46] Perdew J P, Burke K and Ernzerhof M 1996Phys. Rev. Lett.77 3865 [47] Moruzzi V L, Janak J F and Schwarz K 1988Phys. Rev. B37 790 [48] Li C M, Hu Q M, Yang R, Johansson B and Vitos L 2010Phys. Rev. B82 094201 [49] Skubic B, Hellsvik J, Nordström L and Eriksson O 2008J. Phys.: Condens. Matter20 315203 [50] Antropov V P, Katsnelson M I, Harmon B N, Schilfgaarde M van and Kusnezov D 1996Phys. Rev. B54 1019 [51] García-Palacios J L and Lázaro F J 1997Phys. Rev. B55 1006 [52] Watson R E, Blume M and Vineyard G H 1969Phys. Rev.181 811 [53] Bergman A, Taroni A, Bergqvist L, Hellsvik J, Hjörvarsson B and Eriksson O 2010Phys. Rev. B81 144416 [54] Liechtenstein A, Katsnelson M I and Gubanov V A 1984J. Phys. F: Met. Phys.14 L125 [55] Liechtenstein A, Katsnelson M I, Antropov V P and Gubanov V A 1987J. Magn. Magn. Mater.67 65 [56] Staunton J, Gyöffy B L, Pindor A J, Stocks G M and Winter H 1984J. Magn. Magn. Mater.45 15 [57] Dutta B, Bhandary S, Ghosh S and Sanyal B 2012Phys. Rev. B86 024419 [58] Steinle-Neumann G, Stixrude L and Cohen R E 1999Phys. Rev. B60 791 [59] Buschow K H J, Engen P G van and Jongebreur R 1983J. Magn. Magn. Mater.38 1 [60] Umetsu R Y, Kobayashi K, Kainuma R, Fujita A and Fukamichi K 2004Appl. Phys. Lett.85 2011 [61] Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A and Ishida K 2010J. Alloys Compd.499 1 [62] Hamad B 2014J. Appl. Phys.115 113905 [63] Ram S, Chauhan M R, Agarwal K and Kanchana V 2011Phil. Mag. Lett.91 545 [64] Schroeder K, Waybright J, Kharel P, Zhang W, Valloppilly S, Herran J, Lukashev P, Huh Y, Skomski R and Sellmyer D J 2018AIP Adv.8 056431 [65] Buschow K H J and Engen P G van 1981J. Magn. Magn. Mater.25 90 [66] Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y and Shirai M 2010Phys. Rev. B82 144415 [67] Webster P J and Ziebeck K R A 1973J. Phys. Chem. Solid.34 1647 [68] Bentouaf A, Mebsout R and Aïssa B 2019J. Alloys Compd.771 1062 [69] Faure P, Deslandes B, Bazin D, Tailland C, Doukhan R, Fournier J M and Falanga A 1996J. Alloys Compd.244 131 [70] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984Philos. Mag. B49 295 [71] Punkkinen M P J, Kwon S K, Kollár J, Johansson B and Vitos L 2011Phys. Rev. Lett.106 057202 [72] Roy T, Pandey D and Chakrabarti A 2016Phys. Rev. B93 184102
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.