Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 056105    DOI: 10.1088/1674-1056/ac3986
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study

Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍)
College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
Abstract  The alloying and magnetic disordering effects on site occupation, elastic property, and phase stability of Co$_{2}Y$Ga ($Y={\rm Cr}$, V, and Ni) shape memory alloys are systematically investigated using the first-principles exact muffin-tin orbitals method. It is shown that with the increasing magnetic disordering degree $y$, their tetragonal shear elastic constant $C'$ (i.e., $(C_{11}-C_{12})/2$) of the $L2_{1}$ phase decreases whereas the elastic anisotropy $A$ increases, and upon tetragonal distortions the cubic phase gets more and more unstable. Co$_{2}$CrGa and Co$_{2}$VGa alloys with $y\geq0.2$ thus can show the martensitic transformation (MT) from $L2_{1}$ to $D0_{22}$ as well as Co$_{2}$NiGa. In off-stoichiometric alloys, the site preference is controlled by both the alloying and magnetic effects. At the ferromagnetism state, the excessive Ga atoms always tend to take the $Y$ sublattices, whereas the excessive Co atom favor the $Y$ sites when $Y={\rm Cr}$, and the excessive $Y$ atoms prefer the Co sites when $Y={\rm Ni}$. The Ga-deficient $Y={\rm V}$ alloys can also occur the MT at the ferromagnetism state by means of Co or V doping, and the MT temperature $T_{\rm M}$ should increase with their addition. In the corresponding ferromagnetism $Y={\rm Cr}$ alloys, nevertheless, with Co or Cr substituting for Ga, the reentrant MT (RMT) from $D0_{22}$ to $L2_{1}$ is promoted and then $T_{\rm M}$ for the RMT should decrease. The alloying effect on the MT of these alloys is finally well explained by means of the Jahn-Teller effect at the paramagnetic state. At the ferromagnetism state, it may originate from the competition between the austenite and martensite about their strength of the covalent banding between Co and Ga as well as $Y$ and Ga.
Keywords:  first-principles      martensitic transformation      elastic modulus      magnetic ordering      shape memory alloys  
Received:  24 June 2021      Revised:  14 October 2021      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  62.20.de (Elastic moduli)  
  63.20.dk (First-principles theory)  
  64.70.K-  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos.12174269,11674233 and 51301176),the China Postdoctoral Science Foundation (Grant Nos.2013M530133 and 2014T70264),and the Natural Science Foundation of Liaoning Province,China (Grant Nos.2019-MS-287 and L201602672).
Corresponding Authors:  Chun-Mei Li,E-mail:cmli@synu.edu.cn     E-mail:  cmli@synu.edu.cn
About author:  2021-11-15

Cite this article: 

Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍) Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study 2022 Chin. Phys. B 31 056105

[1] Wuttig M, Li J and Craciunescu C 2001Scr. Mater. 44 2393
[2] Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y and Garay A 2010Acta Mater. 58 5220
[3] Xu X, Nagasako M, Kataoka M, Umetsu R Y, Omori T, Kanomata T and Kainuma R 2015Phys. Rev. B 91 104434
[4] Odaira T, Xu X, Miyake A, Omori T, Tokunaga M and Kainuma R 2018Scr. Mater. 153 35
[5] Liu C Q, Li Z, Zhang Y L, Huang Y S, Ye M F, Sun X D, Zhang G J, Cao Y M, Xu K and Jing C 2018Appl. Phys. Lett. 112 211903
[6] Xu X, Nagashima A, Nagasako M, Omori T, Kanomata T and Kainuma R 2017Appl. Phys. Lett. 110 121906
[7] Obaidallah A, Algethami A, Zhang Q Q, Tan J G, Wang X T, Liu Z H and Ma X Q 2020J. Magn. Magn. Mater. 498 166252
[8] Huang Y, Jing C, Li J, Zhang Y, Zhang G and Qin N 2020J. Magn. Magn. Mater. 513 167059
[9] Li C M, Zhou J P, Yang S J and Zhang Y 2021Comput. Mater. Sci. 196 110527
[10] Jiang H X, Xu X, Omori T, Nagasako M, Ruan J J, Yang S Y, Wang C P, Liu X J and Kainuma R 2016Mater. Sci. Eng. A 676 191
[11] Jiang H X, Wang C P, Xu W W, Xu X, Yang S Y, Kainuma R and Liu X J 2017Mater. Des. 116 300
[12] Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K and Kainuma R 2013Appl. Phys. Lett. 103 164104
[13] Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A and Entel P 2010Phys. Rev. B 82 064420
[14] Singh N, Dogan E, Karaman I and Arróyave R 2011Phys. Rev. B 84 184201
[15] Dogan E, Karaman I, Singh N, Chivukula A, Thawabi H S and Arróyave R 2012Acta Mater. 60 3545
[16] Talapatra A, Arróyave R, Entel P, Valencia-Jaime I and Romero A H 2015Phys. Rev. B 92 054107
[17] Sahay S and Goswami B 2009Solid State Phenom. 150 197
[18] Craciunescu C, Kishi Y, Lograsso T A and Wutting M 2002Scr. Mater. 47 285
[19] Li Y, Xin Y, Chai L, Ma Y and Xu H 2010Acta Mater. 58 3655
[20] Xu X, Omori T, Nagasako M, Kanomata T and Kainuma R 2015Appl. Phys. Lett. 107 181904
[21] Xin Y, Li Y, Jiang C B and Xu H B 2005Mater. Sci. Forum 475-479 1991
[22] Seguí C, Pons J and Cesari E 2007Acta Mater. 55 1649
[23] Hu Q M, Luo H B, Li C M, Vitos L and Yang R 2012Sci. China Tech. Sci. 55 295
[24] Chen J, Li Y, Shang J X and Xu H B 2006Appl. Phys. Lett. 89 231921
[25] Bungaro C, Rabe K M and Corso A Dal 2003Phys. Rev. B 68 134104
[26] Stipcich M, Mañosa L, Planes A, Morin M, Zarestky J, Lograsso T and Stassis C 2004Phys. Rev. B 70 054115
[27] Banik S, Ranjan R, Chakrabarti A, Bhardwaj S, Lalla N P, Awasthi A M, Sathe V, Phase D M, Mukhopadhyay P K, Pandey D and Barman S R 2007Phys. Rev. B 75 104107
[28] Lanska N, Söderberg O, Sozinov A, Ge Y, Ullakko K and Lindroos V K 2004J. Appl. Phys. 95 8074
[29] Li C M, Luo H B, Hu Q M, Yang R, Johansson B and Vitos L 2012Phys. Rev. B 86 214205
[30] Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L and Lashley J C 2008Phys. Rev. Lett. 100 165703
[31] Godlevsky V V and Rabe K M 2001Phys. Rev. B 63 134407
[32] Vitos L 2007Computational Quantum Mechanics for Materials Engineers (London: Springer-Verlag)
[33] Andersen O K, Jepsen O and Krier G 1994Lectures on Methods of Electronic Structure Calculations (Singapore: World Scientific) pp. 63-124
[34] Vitos L, Skriver H L, Johansson B and Kollár J 2000Comput. Mater. Sci. 18 24
[35] Vitos L 2001Phys. Rev. B 64 014107
[36] Zwierzycki M and Andersen O K 2009Acta Phys. Pol. A 115 64
[37] Kollár J, Vitos L and Skriver H L 2000Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method (Berlin: Springer-Verlag) p. 85
[38] Soven P 1967Phys. Rev. 156 809
[39] Vitos L, Abrikosov I A and Johansson B 2001Phys. Rev. Lett. 87 156401
[40] Györffy B L 1972Phys. Rev. B 5 2382
[41] Vitos L, Korzhavyi P A and Johansson B 2003Nat. Mater. 2 25
[42] Kim D Y, Hong J and Vitos L 2014Phys. Rev. B 90 144413
[43] Li C M, Yang R, Johansson B and Vitos L 2016Phys. Rev. B 94 214108
[44] Li C M, Hu Y F, Feng W J and Huang R Z 2018Phys. Rev. B 98 224107
[45] Li C M, Zhang Y, Feng W J, Huang R Z and Gao M 2020Phys. Rev. B 101 054106
[46] Perdew J P, Burke K and Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[47] Moruzzi V L, Janak J F and Schwarz K 1988Phys. Rev. B 37 790
[48] Li C M, Hu Q M, Yang R, Johansson B and Vitos L 2010Phys. Rev. B 82 094201
[49] Skubic B, Hellsvik J, Nordström L and Eriksson O 2008J. Phys.: Condens. Matter 20 315203
[50] Antropov V P, Katsnelson M I, Harmon B N, Schilfgaarde M van and Kusnezov D 1996Phys. Rev. B 54 1019
[51] García-Palacios J L and Lázaro F J 1997Phys. Rev. B 55 1006
[52] Watson R E, Blume M and Vineyard G H 1969Phys. Rev. 181 811
[53] Bergman A, Taroni A, Bergqvist L, Hellsvik J, Hjörvarsson B and Eriksson O 2010Phys. Rev. B 81 144416
[54] Liechtenstein A, Katsnelson M I and Gubanov V A 1984J. Phys. F: Met. Phys. 14 L125
[55] Liechtenstein A, Katsnelson M I, Antropov V P and Gubanov V A 1987J. Magn. Magn. Mater. 67 65
[56] Staunton J, Gyöffy B L, Pindor A J, Stocks G M and Winter H 1984J. Magn. Magn. Mater. 45 15
[57] Dutta B, Bhandary S, Ghosh S and Sanyal B 2012Phys. Rev. B 86 024419
[58] Steinle-Neumann G, Stixrude L and Cohen R E 1999Phys. Rev. B 60 791
[59] Buschow K H J, Engen P G van and Jongebreur R 1983J. Magn. Magn. Mater. 38 1
[60] Umetsu R Y, Kobayashi K, Kainuma R, Fujita A and Fukamichi K 2004Appl. Phys. Lett. 85 2011
[61] Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A and Ishida K 2010J. Alloys Compd. 499 1
[62] Hamad B 2014J. Appl. Phys. 115 113905
[63] Ram S, Chauhan M R, Agarwal K and Kanchana V 2011Phil. Mag. Lett. 91 545
[64] Schroeder K, Waybright J, Kharel P, Zhang W, Valloppilly S, Herran J, Lukashev P, Huh Y, Skomski R and Sellmyer D J 2018AIP Adv. 8 056431
[65] Buschow K H J and Engen P G van 1981J. Magn. Magn. Mater. 25 90
[66] Kanomata T, Chieda Y, Endo K, Okada H, Nagasako M, Kobayashi K, Kainuma R, Umetsu R Y, Takahashi H, Furutani Y, Nishihara H, Abe K, Miura Y and Shirai M 2010Phys. Rev. B 82 144415
[67] Webster P J and Ziebeck K R A 1973J. Phys. Chem. Solid. 34 1647
[68] Bentouaf A, Mebsout R and Aïssa B 2019J. Alloys Compd. 771 1062
[69] Faure P, Deslandes B, Bazin D, Tailland C, Doukhan R, Fournier J M and Falanga A 1996J. Alloys Compd. 244 131
[70] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984Philos. Mag. B 49 295
[71] Punkkinen M P J, Kwon S K, Kollár J, Johansson B and Vitos L 2011Phys. Rev. Lett. 106 057202
[72] Roy T, Pandey D and Chakrabarti A 2016Phys. Rev. B 93 184102
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[11] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[12] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[13] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[14] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!