Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046401    DOI: 10.1088/1674-1056/ac3987
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study

Xin Zhang(张鑫)1,2, Ruge Quhe(屈贺如歌)1,†, and Ming Lei(雷鸣)1,‡
1 State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
Abstract  The degradation mechanism of the all-inorganic perovskite solar cells in the ambient environment remains unclear. In this paper, water and oxygen molecule adsorptions on the all-inorganic perovskite (CsPbBr3) surface are studied by density-functional theory calculations. In terms of the adsorption energy, the water molecules are more susceptible than the oxygen molecules to be adsorbed on the CsPbBr3 surface. The water molecules can be adsorbed on both the CsBr- and PbBr-terminated surfaces, but the oxygen molecules tend to be selectively adsorbed on the CsBr-terminated surface instead of the PbBr-terminated one due to the significant adsorption energy difference. While the adsorbed water molecules only contribute deep states, the oxygen molecules introduce interfacial states inside the bandgap of the perovskite, which would significantly impact the chemical and transport properties of the perovskite. Therefore, special attention should be paid to reduce the oxygen concentration in the environment during the device fabrication process so as to improve the stability and performance of the CsPbBr3-based devices.
Keywords:  all-inorganic perovskite      structural and electronic properties      molecule adsorption      density functional theory  
Received:  27 July 2021      Revised:  11 November 2021      Accepted manuscript online:  15 November 2021
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.61.Le (Other inorganic semiconductors)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (Grant Nos. 91964101 and 11905016), a Project of Shandong Provincial Higher Educational Science and Technology Program (Grant No. J18KB108), the Fund from the State Key Laboratory of Artificial Microstructure & Mesoscopic Physics, and the Fund of the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications). We also thank the support from the High-performance Computing Platform of Peking University.
Corresponding Authors:  Ruge Quhe, Ming Lei     E-mail:  quheruge@bupt.edu.cn;mlei@bupt.edu.cn

Cite this article: 

Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣) Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study 2022 Chin. Phys. B 31 046401

[1] Li Z, Klein T R, Kim D H, Yang M, Berry J J, Van Hes M F A M and Zhu K 2018 Nat. Rev. Mater. 3 18017
[2] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[3] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[4] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S and Yang Y 2014 Science 345 542
[5] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[6] MOller C K 1958 Nature 182 1436
[7] Tanaka K T, Ban T, Kondo T, Uchida K and Miura N 2003 Solid State Commun. 127 619
[8] Stranks S D E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J 2013 Science 342 341
[9] Xing G M, Sun N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S and Sum T C 2013 Science 342 344
[10] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M 2014 Adv. Mater. 26 1584
[11] Ponseca C S, Savenije Jr, Abdellah T J, Zheng M, Yartsev K, Pascher A, Harlang T, Chabera T, Pullerits P, Stepanov T, Wolf A and Sundstrom J P V 2014 J. Am. Chem. Soc. 136 5189
[12] Kim J, Anita H B and Huang S J 2019 Sol. RRL 3 1800302
[13] Li X, Wu Y, Zhang S, Cai Bi, Gu Y, Song J and Zeng H 2016 Adv. Funct. Mater. 26 2435
[14] Wei J, Wang Q W, Huo J D, Gao F, Gan Z Y, Zhao Q and Li H B 2020 Adv. Energy Mater. 11 2002326
[15] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[16] Husin S A S, Muhammad F D, Che A C A, Ribut S H, Zulkifli M Z and Mahdi M A 2019 Chin. Phys. B 28 84207
[17] Zhou Y and Zhao Y 2019 Energy Environ. Sci. 12 1495
[18] Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A and Nag A 2015 Angew. Chem. 54 15424
[19] Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, A Nag, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
[20] Yang F, Wang C, Pan Y, Zhou X, Kong X and Ji W 2019 Chin. Phys. B 28 056402
[21] Niu G, Li W, Meng F, Wang L, Dong H and Qiu Y 2014 J. Mater. Chem. A 2 705
[22] Yang J L, Siempelkamp B D, Liu D Y and Kelly T L 2015 Acs Nano 9 1955
[23] Gratzel M 2014 Nat. Mater. 13 838
[24] Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M and Snaith H J 2013 Nat. Commun. 4 2885
[25] Martinez-Gonzalez J A, English N J and Gowen A A 2021 Mol. Simulat. 47 666
[26] Liu Y C, Chen J H, Li Y Q, Zhang J J and Kang D 2021 Physicochem. Probl. Miner. Process. 57 121
[27] Lin Y T, Smith N J, Banerjee J, Agnello G, Manley R G, Walczak W J and Kim S H 2021 J. Am. Ceram. Soc. 104 1568
[28] Li S Q, Chang Y, Zhang Z, Liu H S, Chen M D, Han Y, Gao J F and Zhao J J 2021 J. Phys. Chem. C 125 667
[29] Zhang L H and Sit P H L 2015 J. Phys. Chem. C 119 22370
[30] Hao W, Chen X and Li S 2016 J. Phys. Chem. C 120 28448
[31] Mosconi E, Azpiroz J M and De Angelis F 2015 Chem. Mater. 27 4885
[32] Dong X, Fang X, Lv M, Lin B, Zhang S, Ding J and Yuan N 2015 J. Mater. Chem. A 3 5360
[33] Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T and Haque S A 2015 Angew. Chem. 54 8208
[34] Aristidou N, Haque S, Eames C, Sanchezmolina I, Bu X, Kosco J, Saiful Islam M and Haque S 2017 Nat. Commun. 8 15218
[35] Leguy A, Hu Y, Campoy-Quiles M, Alonso M I, Weber O J, Azarhoosh P, Schilfgaarde M, Weller M T, Bein T, Nelson J, Docampo P and Barnes P R F 2015 Chem. Mater. 27 3397
[36] Han Y, Meyer S, Dkhissi Y, Weber K, Pringle J M, Bach U, Spiccia L and Cheng Y B 2015 J. Mater. Chem. A 3 8139
[37] Chen S, Solanki A, Pan J S and Sum T C 2019 Coatings 9 535
[38] Vackar J, Simunek A and Podloucky R 1996 Phys. Rev. B 53 7727
[39] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[41] Emamian S, Lu T, Kruse H and Emamian H 2019 J. Comput. Chem. 40 2868
[42] Michaelides A, Ranea V A, de Andres P L and King D A 2003 Phys. Rev. Lett. 90 216102
[43] Weerd C D, Lin J H, Gomez L, Fujiwara Y, Suenaga K and Gregorkiewicz Tom 2017 J. Phys. Chem. C 121 19490
[44] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M and White T J 2013 J. Mater. Chem. A 1 5628
[45] Ye Y, Run X, Tao X H, Feng H, Fei X and Lin J W 2015 Chin. Phys. B 24 116302
[46] Lang L, Yang J H, Liu H R, Xiang H J and Gong X G 2014 Phys. Lett. A 378 290
[47] Ahmad M, Rehman G, Ali L, Shafip M, Iqbal R, Ahmad R, Khan T, Jalali-Asadabadi S, Maqbool M and Ahmad I 2017 J. Alloys Compd. 705 828
[48] Tong C J, Geng W, Tang Z K, Yan C Y and Fan S L 2015 J. Phys. Chem. L 6 3289
[49] Shen Y, Lu P F, Yu Z Y, Zhao L, Ye H, Liu Y M and Yuan G F 2011 Commun. Theor. Phys. 55 693
[50] Yang J X, Zhang P, Wang J P and Wei S H 2020 Chin. Phys. B 29 108401
[51] Li Z Q, Li Z L, Shi Z F and Fang X S 2020 Adv. Funct. Mater. 30 2002634
[52] Lei J H, Tang Q, He J and Cai M Q 2021 Chin. Phys. B 30 038102
[53] Wang H P, Li S Y, Liu X Y, Shi Z F, Fang X S and He J H 2021 Adv. Materials 33 2003309
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[14] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!