Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 046501    DOI: 10.1088/1674-1056/ac3ecf
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands

Qilong Gao(高其龙)1,†, Yixin Jiao(焦怡馨)1, and Gang Li(李纲)2,‡
1 Key Laboratory of Materials Physics of the Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
2 College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
Abstract  Exploring new abnormal thermal expansion materials is important to understand the nature of thermal expansion. Metal-organic framework (MOF) with unique structure flexibility is an ideal material to study the thermal expansion. This work adopts the high-resolution variable-temperature powder x-ray diffraction to investigate the structure and intrinsic thermal expansion in Sr-MOF ([Sr(DMPhH2IDC)2]n). It has the unique honeycomb structure with one-dimensional (1D) channels along the c-axis direction, the a-b plane displays layer structure. The thermal expansion behavior has strong relationship with the structure, ZTE appears in the a-b plane and large PTE along the c-axis direction. The possible mechanism is that the a/b layers have enough space for the transverse thermal vibration of polydentate ligands, while along the c-axis direction is not. This work not only reports one interesting zero thermal expansion material, but also provides new understanding for thermal expansion mechanism from the perspective of the structural model.
Keywords:  negative thermal expansion      metal-organic framework      zero thermal expansion      transverse thermal vibration      structure flexibility  
Received:  29 July 2021      Revised:  25 November 2021      Accepted manuscript online:  01 December 2021
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  61.66.-f (Structure of specific crystalline solids)  
  61.05.cp (X-ray diffraction)  
  66.30.hp (Molecular crystals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 22071221 and 21905252) and the Natural Science Foundation of Henan Province, China (Grant No. 212300410086).
Corresponding Authors:  Qilong Gao, Gang Li     E-mail:  qilonggao@zzu.edu.cn;gangli@zzu.edu.cn

Cite this article: 

Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲) Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands 2022 Chin. Phys. B 31 046501

[1] Barrera G D, Bruno J A O, Barron T H K and Allan N L 2005 J. Phys.:Condens. Mater. 17 R217
[2] Liu H, Sun W, Zhang Z, Lovings L N and Lind C 2021 Solids 2 87
[3] Jiang X, Molokeev M S, Gong P, Yang Y, Wang W, Wang S and Lin Z 2016 Adv. Mater. 28 7936
[4] Yuan H, Wang C, Gao Q, Ge X, Sun H, Lapidus S H and Liang E 2020 Inorg. Chem. 59 4090
[5] Liang E, Sun Q, Yuan H,Wang J, Zeng G and Gao Q 2021 Front. Phys. 16 53302
[6] Shi N, Sanson A, Gao Q, Sun Q, Ren Y, Huang Q and Chen J 2020 J. Am. Chem. Soc. 142 3088
[7] Gao Y, Wang C, Gao Q, Guo J, Chao M, Jia Y and Liang, E 2020 Inorg. Chem. 59 18427
[8] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B 27 066501
[9] Xu S, Hu Y, Liang Y, Shi C, Su Y, Guo J, Gao Q, Chao M and Liang E 2020 Chin. Phys. B 29 086501
[10] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G and Liang E J 2016 Chin. Phys. Lett. 33 046503
[11] Yang C, Zhang Y, Bai J, Tong P, Lin J, Tong H and Sun Y 2018 Inorg. Chem. 57 14396
[12] Zhang M, Wang C, Zhang Y, Gao Q and Jia Y 2021 Chin. Phys. B 30 056501
[13] Gao Q L, Liang E J, Xing X R and Chen J 2020 Chem J. Chinese. Universities 41 388
[14] Gao Q L, Sun Y, Shi N K, Milazzo R, Pollastri S, Olivi L, Huang Q Z, Liu H, Sanson A, Sun Q, Liang E J and Xing X R, Chen J 2020 Scripta Mater. 187 119
[15] Gao Q, Sun Q, Venier A, Sanson A, Huang Q, Jia Y, Liang E and Chen J 2022 Sci. China Mater. 65 553
[16] Li Y, Gao Q L, Chang D H, Sun P J, Liu J Z, Jia Y, Liang E J and Sun Q 2020 J. Phys. Condens. Mater. 32 455703
[17] Li M, Li Y, Wang C Y and Sun Q 2019 Chin. Phys. Lett. 36 066301
[18] Liu Z, Gao Q, Chen J, Deng J, Lin K and Xing, X 2018 Chem. Commun. 54 5164
[19] Wang L, Wang C, Sun Y, Shi K, Deng S and Lu H 2016 Mater. Chem. Phys. 175 138
[20] Yamada I, Marukawa S, Murakami M and Mori S 2014 Appl. Phys. Lett. 105 231906
[21] Pachoud E, Cumby J, Lithgow C T and Attfield J P 2018 J. Am. Chem. Soc. 140 636
[22] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Jun Y, Na Y Y, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B 85 220103
[23] Qiao Y, Song Y, Xu M, Gao Q, Ren Y, Xing X and Chen J 2019 Inorg. Chem. Front. 6 3225
[24] Gao Q, Shi X, Venier A, Carnera A, Huang Q, Wu H and Liang E 2020 Inorg. Chem. 59 14852
[25] Chen J, Fan L, Ren Y, Pan Z, Deng J, Yu R and Xing X 2013 Phys. Rev. Lett. 110 115901
[26] Wei W, Gao Q, Guo J, Chao M, He L, Chen J and Liang E 2020 Appl. Phys. Lett. 116 181902
[27] Gao Q, Wang J, Sanson A, Sun Q, Liang E, Xing X and Chen J 2020 J. Am. Chem. Soc. 142 6935
[28] Ji Z, Di Z, Li H, Zou S, Wu M and Hong M 2021 Inorg. Chem. Commun. 128 108597
[29] Rimmer L H, Dove M T, Goodwin A L and Palmer D C 2014 Phys. Chem. Chem. Phys. 16 21144
[30] Schneider C, Bodesheim D, Ehrenreich M G, Crocellá V, Mink J, Fischer R A and Kieslich G 2019 J. Am. Chem. Soc. 141 10504
[31] Cliffe M J, Hill J A, Murray C A, Coudert F X and Goodwin A L 2015 Phys. Chem. Chem. Phys. 17 11586
[32] Asgari M, Kochetygov I, Abedini H and Queen W L 2021 Nano Res. 14 404
[33] Rodríguez-Carvajal J 1993 Physica B 192 55
[34] Xie X, Zhang Z, Zhang J, Hou L, Li Z and Li G 2019 Inorg. Chem. 58 5173
[35] Sanson A 2014 Chem. Mater. 26 3716
[36] Hu L, Chen J, Sanson A, Wu H, Guglieri Rodriguez C, Olivi L and Xing X 2016 J. Am. Chem. Soc. 138 8320
[37] Burtch N C, Baxter S J, Heinen J, Bird A, Schneemann A, Dubbeldam D and Wilkinson A P 2019 Adv. Funct. Mater. 29 1904669
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[3] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[4] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[5] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[6] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[7] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[8] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[9] Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Sai-Lei Li(李赛磊), Yan-Jun Ji(纪延俊), Wen-Ying Mu(穆文英), Wei-Wei Feng(冯伟伟), Gao-Jie Zeng(曾高杰), You-Wen Liu(刘友文), Er-Jun Liang(梁二军). Chin. Phys. B, 2018, 27(6): 066501.
[10] Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries
Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough. Chin. Phys. B, 2018, 27(12): 128201.
[11] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[12] Anisotropic self-diffusion of fluorinated poly(methacrylate) in metal-organic frameworks assessed with molecular dynamics simulation
Tao Lu(鲁桃), Biao Xu(徐彪), Fei-Hong Ye(叶飞宏), Xin-Hui Zhou(周馨慧), Yun-Qing Lu(陆云清), Jin Wang(王瑾). Chin. Phys. B, 2017, 26(12): 123104.
[13] Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y2Mo3O12 cermets
Xian-Sheng Liu(刘献省), Xiang-Hong Ge(葛向红), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2017, 26(11): 118101.
[14] Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ
Yuan Liang(梁源), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Bao-He Yuan(袁保合), Juan Guo(郭娟), Qian Sun(孙强), Er-Jun Liang(梁二军). Chin. Phys. B, 2017, 26(10): 106501.
[15] Zero and controllable thermal expansion in HfMgMo3-xWxO12
Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
No Suggested Reading articles found!