Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙)1,†, Yixin Jiao(焦怡馨)1, and Gang Li(李纲)2,‡
1 Key Laboratory of Materials Physics of the Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China; 2 College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
Abstract Exploring new abnormal thermal expansion materials is important to understand the nature of thermal expansion. Metal-organic framework (MOF) with unique structure flexibility is an ideal material to study the thermal expansion. This work adopts the high-resolution variable-temperature powder x-ray diffraction to investigate the structure and intrinsic thermal expansion in Sr-MOF ([Sr(DMPhH2IDC)2]n). It has the unique honeycomb structure with one-dimensional (1D) channels along the c-axis direction, the a-b plane displays layer structure. The thermal expansion behavior has strong relationship with the structure, ZTE appears in the a-b plane and large PTE along the c-axis direction. The possible mechanism is that the a/b layers have enough space for the transverse thermal vibration of polydentate ligands, while along the c-axis direction is not. This work not only reports one interesting zero thermal expansion material, but also provides new understanding for thermal expansion mechanism from the perspective of the structural model.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 22071221 and 21905252) and the Natural Science Foundation of Henan Province, China (Grant No. 212300410086).
Corresponding Authors:
Qilong Gao, Gang Li
E-mail: qilonggao@zzu.edu.cn;gangli@zzu.edu.cn
Cite this article:
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲) Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands 2022 Chin. Phys. B 31 046501
[1] Barrera G D, Bruno J A O, Barron T H K and Allan N L 2005 J. Phys.:Condens. Mater. 17 R217 [2] Liu H, Sun W, Zhang Z, Lovings L N and Lind C 2021 Solids2 87 [3] Jiang X, Molokeev M S, Gong P, Yang Y, Wang W, Wang S and Lin Z 2016 Adv. Mater. 28 7936 [4] Yuan H, Wang C, Gao Q, Ge X, Sun H, Lapidus S H and Liang E 2020 Inorg. Chem. 59 4090 [5] Liang E, Sun Q, Yuan H,Wang J, Zeng G and Gao Q 2021 Front. Phys. 16 53302 [6] Shi N, Sanson A, Gao Q, Sun Q, Ren Y, Huang Q and Chen J 2020 J. Am. Chem. Soc. 142 3088 [7] Gao Y, Wang C, Gao Q, Guo J, Chao M, Jia Y and Liang, E 2020 Inorg. Chem. 59 18427 [8] Wang J P, Chen Q D, Li S L, Ji Y J, Mu W Y, Feng W W, Zeng G J, Liu Y W and Liang E J 2018 Chin. Phys. B27 066501 [9] Xu S, Hu Y, Liang Y, Shi C, Su Y, Guo J, Gao Q, Chao M and Liang E 2020 Chin. Phys. B29 086501 [10] Ge X H, Mao Y C, Li L, Li L P, Yuan N, Cheng Y G and Liang E J 2016 Chin. Phys. Lett. 33 046503 [11] Yang C, Zhang Y, Bai J, Tong P, Lin J, Tong H and Sun Y 2018 Inorg. Chem. 57 14396 [12] Zhang M, Wang C, Zhang Y, Gao Q and Jia Y 2021 Chin. Phys. B30 056501 [13] Gao Q L, Liang E J, Xing X R and Chen J 2020 Chem J. Chinese. Universities41 388 [14] Gao Q L, Sun Y, Shi N K, Milazzo R, Pollastri S, Olivi L, Huang Q Z, Liu H, Sanson A, Sun Q, Liang E J and Xing X R, Chen J 2020 Scripta Mater. 187 119 [15] Gao Q, Sun Q, Venier A, Sanson A, Huang Q, Jia Y, Liang E and Chen J 2022 Sci. China Mater. 65 553 [16] Li Y, Gao Q L, Chang D H, Sun P J, Liu J Z, Jia Y, Liang E J and Sun Q 2020 J. Phys. Condens. Mater. 32 455703 [17] Li M, Li Y, Wang C Y and Sun Q 2019 Chin. Phys. Lett. 36 066301 [18] Liu Z, Gao Q, Chen J, Deng J, Lin K and Xing, X 2018 Chem. Commun. 54 5164 [19] Wang L, Wang C, Sun Y, Shi K, Deng S and Lu H 2016 Mater. Chem. Phys. 175 138 [20] Yamada I, Marukawa S, Murakami M and Mori S 2014 Appl. Phys. Lett. 105 231906 [21] Pachoud E, Cumby J, Lithgow C T and Attfield J P 2018 J. Am. Chem. Soc. 140 636 [22] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Jun Y, Na Y Y, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B85 220103 [23] Qiao Y, Song Y, Xu M, Gao Q, Ren Y, Xing X and Chen J 2019 Inorg. Chem. Front. 6 3225 [24] Gao Q, Shi X, Venier A, Carnera A, Huang Q, Wu H and Liang E 2020 Inorg. Chem. 59 14852 [25] Chen J, Fan L, Ren Y, Pan Z, Deng J, Yu R and Xing X 2013 Phys. Rev. Lett. 110 115901 [26] Wei W, Gao Q, Guo J, Chao M, He L, Chen J and Liang E 2020 Appl. Phys. Lett. 116 181902 [27] Gao Q, Wang J, Sanson A, Sun Q, Liang E, Xing X and Chen J 2020 J. Am. Chem. Soc. 142 6935 [28] Ji Z, Di Z, Li H, Zou S, Wu M and Hong M 2021 Inorg. Chem. Commun. 128 108597 [29] Rimmer L H, Dove M T, Goodwin A L and Palmer D C 2014 Phys. Chem. Chem. Phys. 16 21144 [30] Schneider C, Bodesheim D, Ehrenreich M G, Crocellá V, Mink J, Fischer R A and Kieslich G 2019 J. Am. Chem. Soc. 141 10504 [31] Cliffe M J, Hill J A, Murray C A, Coudert F X and Goodwin A L 2015 Phys. Chem. Chem. Phys. 17 11586 [32] Asgari M, Kochetygov I, Abedini H and Queen W L 2021 Nano Res. 14 404 [33] Rodríguez-Carvajal J 1993 Physica B192 55 [34] Xie X, Zhang Z, Zhang J, Hou L, Li Z and Li G 2019 Inorg. Chem. 58 5173 [35] Sanson A 2014 Chem. Mater. 26 3716 [36] Hu L, Chen J, Sanson A, Wu H, Guglieri Rodriguez C, Olivi L and Xing X 2016 J. Am. Chem. Soc. 138 8320 [37] Burtch N C, Baxter S J, Heinen J, Bird A, Schneemann A, Dubbeldam D and Wilkinson A P 2019 Adv. Funct. Mater. 29 1904669
Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
Zero and controllable thermal expansion in HfMgMo3-xWxO12 Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.