|
|
Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te) |
Na Qin(秦娜)1, Xian Du(杜宪)1, Yangyang Lv(吕洋洋)2, Lu Kang(康璐)1, Zhongxu Yin(尹中旭)1, Jingsong Zhou(周景松)1, Xu Gu(顾旭)1, Qinqin Zhang(张琴琴)1, Runzhe Xu(许润哲)1, Wenxuan Zhao(赵文轩)1, Yidian Li(李义典)1, Shuhua Yao(姚淑华)2, Yanfeng Chen(陈延峰)2, Zhongkai Liu(柳仲楷)3,4, Lexian Yang(杨乐仙)1,5, and Yulin Chen(陈宇林)1,3,4,6,† |
1 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China; 3 School of Physical Science and Technology, ShanghaiTech University and CAS-Shanghai Science Research Center, Shanghai 201210, China; 4 ShanghaiTech Laboratory for Topological Physics, Shanghai 200031, China; 5 Frontier Science Center for Quantum Information, Beijing 100084, China; 6 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3 PU, UK |
|
|
Abstract Ternary transition metal chalcogenides provide a rich platform to search and study intriguing electronic properties. Using angle-resolved photoemission spectroscopy and ab initio calculation, we investigate the electronic structure of Cu$_{2}$Tl$X_{2}$ ($X=\text{Se, Te}$), ternary transition metal chalcogenides with quasi-two-dimensional crystal structure. The band dispersions near the Fermi level are mainly contributed by the Te/Se p orbitals. According to our ab-initio calculation, the electronic structure changes from a semiconductor with indirect band gap in Cu$_{2}$TlSe$_{2}$ to a semimetal in Cu$_{2}$TlTe$_{2}$, suggesting a band-gap tunability with the composition of Se and Te. By comparing ARPES experimental data with the calculated results, we identify strong modulation of the band structure by spin-orbit coupling in the compounds. Our results provide a ternary platform to study and engineer the electronic properties of transition metal chalcogenides related to large spin-orbit coupling.
|
Received: 28 August 2021
Revised: 26 October 2021
Accepted manuscript online: 01 December 2021
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: This study was supported by the National Natural Science Foundation of China (Grant No. 11774190). We thank for access to DLS beamline I05 and NSRL beamline 13U with help from S. W. Jung, C. Cacho, S. T. Cui, and Z. Sun. |
Corresponding Authors:
Yulin Chen
E-mail: yulin.chen@physics.ox.ac.uk
|
Cite this article:
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林) Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te) 2022 Chin. Phys. B 31 037101
|
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV and Kis A 2017 Nat. Rev. Mater. 2 17033 [2] Wang G, Chernikov A, Glazov M, Heinz T, Marie X, Amand T and Urbaszek 2018 Rev. Mod. Phys. 90 021001 [3] Klemm R A 2015 Physica C 514 86 [4] Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544 [5] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forró L and Tutiš E 2008 Nat. Mater. 7 960 [6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344 [7] Zhang Q H, Liu Z K, Sun Y, Yang H F, Jiang J, Mo S K, Hussain Z, Qian X F, Fu L, Yao S H, Lu M H, Felser C, Yan B H, Chen Y L and Yang L X 2019 Phys. Rev. Lett. 103 226803 [8] Jiang J, Liu Z K, Sun Y, Yang H F, Rajamathi C R, Qi Y P, Yang L X, Chen C, Peng H, Hwang C C, Sun S Z, Mo S K, Vobornik I, Fujii J, Parkin S S P, Felser C, Yan B H and Chen Y L 2017 Nat. Commun. 8 13973 [9] Rossnagel K 2011 J. Phys:Condens Matter. 23 213001 [10] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [11] Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 [12] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [13] Fang Y Q, Pan J, Zhang D Q, Wang D, Hirose H T, Terashima T, Uji S, Yuan Y H, Li W, Tian Z, Xue J M, Ma Y H, Zhao W, Xue Q K, Mu G, Zhang H J and Huang F Q 2019 Adv. Mater. 31 1901942 [14] Mok B H, Rao S M, Ling M C, Wang K J, Ke C T, Wu P M, Chen C L, Hsu F C, Huang T W, Luo J Y, Yan D C, Ye K W, Wu T N, Chang A M and Wu M K 2009 Crystal Growth & Design. 9 3260 [15] Chen Y J, Xu L X, Li H J, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040 [16] Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2019 Phys. Rev. Lett. 103 226803 [17] Hao Y J, Liu P F, Feng Y, et al. 2019 Phys. Rev. X 9 041038 [18] Li H, Gao S Y, Duan S F, et al. 2019 Phys. Rev. X 9 041039 [19] Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Min B I, Yang B J and Kim J S 2018 Nat. Mater. 17 794 [20] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125 [21] Liu D F, Liang A J, Liu E K, et al. 2019 Science 365 1282 [22] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [23] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [24] Chen Y J, Gu X, Li Y D, Du X, Yang L X and Chen Y L 2020 Matter 3 1114 [25] Lv B, Qian T and Ding H 2019 Nature Reviews Physics 1 609 [26] Jiang J, Tang F, Pan X C, et al. 2015 Phys. Rev. Lett. 115 166601 [27] Van Vleck J H 1937 Phys. Rev. 52 1178 [28] Li X, Lv Y Y, Pang B, Zhang B B, Cao L, Yao S H, Zhou J, Chen Y B, Dong S T, Zhang S T, Lu M H and Chen Y F 2017 Mater. Res. Bull. 89 97 [29] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter. 21 395502 [30] Prandini G, Marrazzo A, Castelli I E, Mounet N and Marzari N 2018 NPJ Computational Materials 4 72 [31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [32] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Computer Physics Communications 224 405 [33] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|