CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device |
Hua-Jun Chen(陈华俊)†, Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成) |
School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots (QDs) based on a hybrid QD-semiconducting nanowire/superconductor (SNW/SC) device mediated by Majorana fermions (MFs). Under the condition of pump on-resonance and off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. In addition, the Fano resonances are accompanied by the rapid normal phase dispersion, which will indicate the coherent optical propagation. The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs, which can reach the conversion between the fast- and slow-light. Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.
|
Received: 07 July 2021
Revised: 19 September 2021
Accepted manuscript online: 22 October 2021
|
PACS:
|
78.67.Hc
|
(Quantum dots)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804004 and 11647001), the China Postdoctoral Science Foundation (Grant No. 2020M681973), and Anhui Provincial Natural Science Foundation, China (Grant No. 1708085QA11). |
Corresponding Authors:
Hua-Jun Chen
E-mail: chenphysics@126.com
|
Cite this article:
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成) Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device 2022 Chin. Phys. B 31 027802
|
[1] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137 [2] Zhou K, Zhang C, Qin L and Li X Q 2021 Chin. Phys. B 30 010301 [3] Gong W J, Xue Y H, Wang X Q, Zhang L L and Yi G Y 2021 Chin. Phys. B 30 077307 [4] Liu J, Li K M, Chi F, Fu Z G, Hou Y F, Wang Z and Zhang P 2020 Chin. Phys. B 29 077302 [5] Chen L, Zhang Y Q and Han R S 2018 Chin. Phys. B 27 077102 [6] Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302 [7] Shang E M, Pang Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201 [8] Alicea J 2012 Rep. Prog. Phys. 75 076501 [9] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P and Kouwenhoven L P 2012 Science 336 1003 [10] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887 [11] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414 [12] Chen J, Yu P, Stenger J, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D and Frolov S M 2017 Sci. Adv. 3 e1701476 [13] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602 [14] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X L, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543 [15] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016 Nature 531 206 [16] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003 [17] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou1 X, Chen Z, Nie T, Shao T Q, Fan Y, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294 [18] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795 [19] Jeon S, Xie Y, Li J, Wang Z, Bernevig B A and Yazdani A 2017 Science 358 772 [20] Urbaszek B, Marie X, Amand T, Krebs O, Voisin P, Maletinsky P, Högele A and Imamoglu A 2013 Rev. Mod. Phys. 85 79 [21] Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S and Sun B Q 2015 Chin. Phys. Lett. 32 077804 [22] Qin L G and Wang Q 2017 Chin. Phys. Lett. 34 017303 [23] Tang J and Xu X L 2018 Chin. Phys. B 27 027804 [24] Gu Y, Tang L B, Guo X P, Xiang J Z, Teng K S and Liu S P 2019 Chin. Phys. B 28 047803 [25] Li S, Shi L and Yan Z W 2020 Chin. Phys. B 29 097802 [26] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308 [27] Flensberg K 2011 Phys. Rev. Lett. 106 090503 [28] Leijnse M and Flensberg K 2011 Phys. Rev. B 84 140501 [29] Pientka F, Kells G, Romito A, Brouwer P W and von Oppen F 2012 Phys. Rev. Lett. 109 227006 [30] Sau J D and Sarma S D 2012 Nat. Commun. 3 964 [31] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 354 1557 [32] Chen H J and Zhu K D 2014 Nanoscale Res. Lett. 9 166 [33] Chen H J, Fang X W, Chen C Z, Li Y and Tang X D 2016 Sci. Rep. 6 36600 [34] Chen H J and Wu H W 2018 Sci. Rep. 8 17677 [35] Chen H J 2020 Quantum Inf. Process. 19 171 [36] Ridolfo A, D Stefano, O, Fina N, Saija R and Savasta S 2010 Phys. Rev. Lett. 105 263601 [37] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [38] Boyd R W 1992 Nonlinear Optics (San Diego:Academic) p. 225 [39] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29 [40] Bennink R S, Boyd R W, Stroud C R and Wong V 2001 Phys. Rev. A 63 033804 [41] Boyd R W and Gauthier D J 2009 Science 326 1074 [42] Wilson-Rae I, Zoller P and Imamoglu A 2004 Phys. Rev. Lett. 92 075507 [43] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [44] Liu Y C, Luan X, Li H K, Gong Q, Wong C W and Xiao Y F 2014 Phys. Rev. Lett. 112 213602 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|