Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027802    DOI: 10.1088/1674-1056/ac3221
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device

Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成)
School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China
Abstract  We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots (QDs) based on a hybrid QD-semiconducting nanowire/superconductor (SNW/SC) device mediated by Majorana fermions (MFs). Under the condition of pump on-resonance and off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. In addition, the Fano resonances are accompanied by the rapid normal phase dispersion, which will indicate the coherent optical propagation. The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs, which can reach the conversion between the fast- and slow-light. Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.
Keywords:  majorana fermions      Fano resonance      slow and fast light      hybrid semiconducting/superconductor device  
Received:  07 July 2021      Revised:  19 September 2021      Accepted manuscript online:  22 October 2021
PACS:  78.67.Hc (Quantum dots)  
  42.50.-p (Quantum optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804004 and 11647001), the China Postdoctoral Science Foundation (Grant No. 2020M681973), and Anhui Provincial Natural Science Foundation, China (Grant No. 1708085QA11).
Corresponding Authors:  Hua-Jun Chen     E-mail:  chenphysics@126.com

Cite this article: 

Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成) Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device 2022 Chin. Phys. B 31 027802

[1] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[2] Zhou K, Zhang C, Qin L and Li X Q 2021 Chin. Phys. B 30 010301
[3] Gong W J, Xue Y H, Wang X Q, Zhang L L and Yi G Y 2021 Chin. Phys. B 30 077307
[4] Liu J, Li K M, Chi F, Fu Z G, Hou Y F, Wang Z and Zhang P 2020 Chin. Phys. B 29 077302
[5] Chen L, Zhang Y Q and Han R S 2018 Chin. Phys. B 27 077102
[6] Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302
[7] Shang E M, Pang Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
[8] Alicea J 2012 Rep. Prog. Phys. 75 076501
[9] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P and Kouwenhoven L P 2012 Science 336 1003
[10] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[11] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[12] Chen J, Yu P, Stenger J, Hocevar M, Car D, Plissard S R, Bakkers E P A M, Stanescu T D and Frolov S M 2017 Sci. Adv. 3 e1701476
[13] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[14] Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X L, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H and Pan S H 2015 Nat. Phys. 11 543
[15] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016 Nature 531 206
[16] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
[17] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou1 X, Chen Z, Nie T, Shao T Q, Fan Y, Zhang S C, Liu K, Xia J and Wang K L 2017 Science 357 294
[18] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[19] Jeon S, Xie Y, Li J, Wang Z, Bernevig B A and Yazdani A 2017 Science 358 772
[20] Urbaszek B, Marie X, Amand T, Krebs O, Voisin P, Maletinsky P, Högele A and Imamoglu A 2013 Rev. Mod. Phys. 85 79
[21] Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S and Sun B Q 2015 Chin. Phys. Lett. 32 077804
[22] Qin L G and Wang Q 2017 Chin. Phys. Lett. 34 017303
[23] Tang J and Xu X L 2018 Chin. Phys. B 27 027804
[24] Gu Y, Tang L B, Guo X P, Xiang J Z, Teng K S and Liu S P 2019 Chin. Phys. B 28 047803
[25] Li S, Shi L and Yan Z W 2020 Chin. Phys. B 29 097802
[26] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
[27] Flensberg K 2011 Phys. Rev. Lett. 106 090503
[28] Leijnse M and Flensberg K 2011 Phys. Rev. B 84 140501
[29] Pientka F, Kells G, Romito A, Brouwer P W and von Oppen F 2012 Phys. Rev. Lett. 109 227006
[30] Sau J D and Sarma S D 2012 Nat. Commun. 3 964
[31] Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P and Marcus C M 2016 Science 354 1557
[32] Chen H J and Zhu K D 2014 Nanoscale Res. Lett. 9 166
[33] Chen H J, Fang X W, Chen C Z, Li Y and Tang X D 2016 Sci. Rep. 6 36600
[34] Chen H J and Wu H W 2018 Sci. Rep. 8 17677
[35] Chen H J 2020 Quantum Inf. Process. 19 171
[36] Ridolfo A, D Stefano, O, Fina N, Saija R and Savasta S 2010 Phys. Rev. Lett. 105 263601
[37] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[38] Boyd R W 1992 Nonlinear Optics (San Diego:Academic) p. 225
[39] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
[40] Bennink R S, Boyd R W, Stroud C R and Wong V 2001 Phys. Rev. A 63 033804
[41] Boyd R W and Gauthier D J 2009 Science 326 1074
[42] Wilson-Rae I, Zoller P and Imamoglu A 2004 Phys. Rev. Lett. 92 075507
[43] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[44] Liu Y C, Luan X, Li H K, Gong Q, Wong C W and Xiao Y F 2014 Phys. Rev. Lett. 112 213602
[1] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[2] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
[3] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[4] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[5] Novel high-quality Fano resonance based on metal-insulator-metal waveguide with L-shaped resonators
Changsong Wu(伍长松) and Jun Zhu(朱君). Chin. Phys. B, 2021, 30(10): 104210.
[6] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[7] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[8] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[9] Chiral p-wave pairing of ultracold fermionic atoms due to a quadratic band touching
Hai-Xiao Wang(王海啸), Zi-Heng Liu(刘子衡), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2018, 27(2): 027402.
[10] Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏). Chin. Phys. B, 2017, 26(12): 127301.
[11] Time gap for temporal cloak based on spectral hole burning in atomic medium
Abdul Jabar M S, Bakht Amin Bacha, Iftikhar Ahmad. Chin. Phys. B, 2016, 25(8): 084205.
[12] Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure
Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏). Chin. Phys. B, 2016, 25(5): 057303.
[13] Superscattering-enhanced narrow band forward scattering antenna
Hu De-Jiao (胡德骄), Zhang Zhi-You (张志友), Du Jing-Lei (杜惊雷). Chin. Phys. B, 2015, 24(10): 104202.
[14] Control of light scattering by nanoparticles with optically-induced magnetic responses
Liu Wei (刘伟), Andrey E. Miroshnichenko, Yuri S. Kivshar. Chin. Phys. B, 2014, 23(4): 047806.
[15] Fano resonance and wave transmission through a chain structure with an isolated ring composed of defects
Zhang Cun-Xi(张存喜), Ding Xiu-Huan(丁秀欢), Wang Rui(王瑞) Zhou Yun-Qing(周运清), and Kong Ling-Min(孔令民) . Chin. Phys. B, 2012, 21(3): 034202.
No Suggested Reading articles found!