Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 084205    DOI: 10.1088/1674-1056/25/8/084205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Time gap for temporal cloak based on spectral hole burning in atomic medium

Abdul Jabar M S, Bakht Amin Bacha, Iftikhar Ahmad
Department of Physics, University of Malakand, Chakdara Dir(L), Pakistan
Abstract  

We demonstrate the possibility of creating a time gap in the slow light based on spectral hole burning in a four-level Doppler broadened sodium atomic system. A time gap is also observed between the slow and the fast light in the hole burning region and near the burnt hole region, respectively. A cloaking time gap is attained in microseconds and no distortion is observed in the transmitted pulse. The width of the time gap is observed to vary with the inverse Doppler effect in this system. Our results may provide a way to create multiple time gaps for a temporal cloak.

Keywords:  temporal cloak      susceptibility      slow and fast light      spectral holes  
Received:  23 January 2016      Revised:  09 March 2016      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
Fund: 

Project supported by the Higher Education Commission (HEC) of Pakistan.

Corresponding Authors:  Abdul Jabar M S     E-mail:  a_jabar80@yahoo.com

Cite this article: 

Abdul Jabar M S, Bakht Amin Bacha, Iftikhar Ahmad Time gap for temporal cloak based on spectral hole burning in atomic medium 2016 Chin. Phys. B 25 084205

[1] McCall M 2013 Contemp. Phys. 54 273
[2] Kinsler P and McCall M W 2014 Ann. Phys. 526 51
[3] Chremmos I 2014 Opt. Lett. 39 4611
[4] Zhou M, Liu H, Sun Q, Huang N and Wang Z 2015 Opt. Express 23 6543
[5] Boyd R W and Shi Z 2012 Nature 481 35
[6] Ward A J and Pendry J B 1996 J. Mod. Opt. 43 773
[7] Leonhardt U 2006 Science 312 1777
[8] Huan S Y, Wei S J, He L D and Jian Y G 2010 Chin. Phys. Lett. 27 094102
[9] Yang L X, Ya L D, Jing L J and Feng D J 2014 Chin. Phys. B 23 054101
[10] McCall M W, Favaro A, Kinsler F and Boardman A 2011 J. Opt. 13 024003
[11] Fridman M, Farsi A, Okawachi Y and Gaeta A L 2012 Nature 481 62
[12] Lukens J M, Leaird D E and Weiner A M 2013 Nature 498 205
[13] Lukens J M, Metcalf A J, Leaird D E and Weiner A M 2014 Optica 1 372
[14] Bony P Y, Guasoni M, Morin P, Sugny D, Picozzi A, Jauslin H R, Pitois S and Fatome J 2014 Nat. Commun. 5 4678
[15] Wu K and Wang G P 2013 Opt. Express 21 238
[16] Zhou M, Liu H, Sun Q, Huang N and Wang Z 2015 Opt. Express 23 6543
[17] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[18] Asadpour S H and Soleimani H R 2014 Chin. Phys. Lett. 31 114207
[19] Elnabi S A and Osman K I 2014 J. Lumin. 147 346
[20] Lei Z, Yan G and Yang Z X 2015 Acta Phys. Sin. 64 134204 (in Chinese)
[21] Fang W C, Feng W and Ru Y L 2015 Chin. Phys. Lett. 32 094203
[22] Li R B, Deng L, Hagley E W, Bienfang J C, Payne M G and Ge M L 2013 Phys. Rev. A 87 023839
[23] Kuang S Q, Du P, Wan R G, Jiang Y and Gao J Y 2008 Opt. Express 16 11604
[24] Rajitha P R, Aleksander R and Hans R 2015 J. Opt. Soc. Am. B 32 2019
[25] Drobizhev M, Karotki A and Rebane A 2001 Chem. Phys. Lett. 334 76
[26] Goodman J W 2005 Introduction to Fourier Optics, 3rd edn. (Englewood:Roberts and Company) p. 491
[1] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[2] Synthesis and study the influence of yttrium doping on band structure, optical, non-linear optical and dielectric results for Ca12Al14O33 (C12A7) single crystals grown using traveling-solvent floating zone (TSFZ) method
A. Abdel Moez, Ahmed I. Ali, and A. Tayel. Chin. Phys. B, 2022, 31(1): 018103.
[3] Effects of short-range attraction on Jamming transition
Zhenhuan Xu(徐震寰), Rui Wang(王瑞), Jiamei Cui(崔佳梅), Yanjun Liu(刘彦君), and Wen Zheng(郑文). Chin. Phys. B, 2021, 30(6): 066101.
[4] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[5] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[6] Intrinsic fluctuation and susceptibility in somatic cell reprogramming process
Jian Shen(沈健), Xiaomin Zhang(张小敏), Qiliang Li(李齐亮), Xinyu Wang(王歆宇), Yunjie Zhao(赵蕴杰), Ya Jia(贾亚). Chin. Phys. B, 2019, 28(4): 040503.
[7] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[8] Low-temperature physical properties and electronic structures of Ni3Sb, Ni5Sb2, NiSb2, and NiSb
Luo Xiao-Ning (罗肖宁), Dong Cheng (董成), Liu Shi-Kai (刘世凯), Zhang Zi-Ping (张子平), Li Ao-Lei (李傲雷), Yang Li-Hong (杨立红), Li Xiao-Chuan (李晓川). Chin. Phys. B, 2015, 24(6): 067201.
[9] Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)
Lv Yi-Fei (吕益飞), Xiang Jian-Yong (向建勇), Wen Fu-Sheng (温福昇), Lv Wei-Ming (吕伟明), Hu Wen-Tao (胡文涛), Liu Zhong-Yuan (柳忠元). Chin. Phys. B, 2015, 24(3): 037502.
[10] Observation of spin glass transition in spinel LiCoMnO4
Chen Hong (陈红), Yang Xu (杨旭), Zhang Pei-Song (张培松), Liang Lei (梁磊), Hong Yuan-Ze (洪源泽), Wei Ying-Jin (魏英进), Chen Gang (陈岗), Du Fei (杜菲), Wang Chun-Zhong (王春忠). Chin. Phys. B, 2015, 24(12): 127501.
[11] Fabrication and magnetic properties of 4SC(NH2)2-Ni0.97Cu0.03Cl2 single crystals
Chen Li-Min (陈丽敏), Guo Ying (郭颖), Liu Xu-Guang (刘旭光), Xie Qi-Yun (解其云), Tao Zhi-Kuo (陶志阔), Chen Jing (谌静), Zhou Ling-Ling (周玲玲), Liu Chun-Sheng (刘春生). Chin. Phys. B, 2015, 24(12): 127503.
[12] Determination of the magnetic anisotropy constant of Cu/Fe/SiO2/Si by a magneto-optical Kerr effect susceptometer
Jia Yi-Jiao (贾义娇), He Wei (何为), Ye Jun (叶军), Hu Bo (胡泊), Chen Zi-Yu (陈子瑜), Gao You-Hui (高有辉), Zhang Xiang-Qun (张向群), Yang Hai-Tao (杨海涛), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2014, 23(1): 017502.
[13] Glassy behaviour of random field Ising spins on Bethe lattice in external magnetic field
Khalid Bannora, Galal Ismail, and Wafaa Hassan. Chin. Phys. B, 2011, 20(6): 067501.
[14] Effects of the insulated magnetic field and oblique incidence of electrons on the multipactor in MILO
Fan Jie-Qing(范杰清) and Hao Jian-Hong(郝建红). Chin. Phys. B, 2011, 20(6): 068402.
[15] Fidelity susceptibility and geometric phase in critical phenomenon
Tian Li-Jun(田立君), Zhu Chang-Qing(朱长青), Zhang Hong-Biao(张宏标), and Qin Li-Guo(秦立国) . Chin. Phys. B, 2011, 20(4): 040302.
No Suggested Reading articles found!