CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer |
Han-Hua Zhong(钟汉华)1, Jian-Hong Zhou(周见红)2, Chen-Jie Gu(顾辰杰)1, Mian Wang(王勉)1, Yun-Tuan Fang(方云团)3, Tian Xu(许田)4, Jun Zhou(周骏)1 |
1. Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211, China; 2. School of Photoelectric Engineering, Changchun University of Science and Technology, Changchun 130022, China; 3. School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China; 4. School of Sciences, Nantong University, Nantong 226007, China |
|
|
Abstract Fano interference of metallic nanostructure is an effective way to reduce the irradiation loss and improve the spectral resolution. A Π-shaped gold nano-trimer, which is composed of a gold nanorod and two gold nanorices, is presented to investigate the properties of Fano resonances in the visible spectrum by using the finite element method (FEM). The theoretical analysis demonstrates that the Fano resonance of the Π-shaped gold nano-trimer is attributed to the near-field interaction between the bright mode of the nanorice pair and the dark quadrupole mode of the nanorod. Furthermore, by breaking the geometric symmetry of the nanostructure the line-shape spectrum with double Fano resonances of Π-shaped gold nano-trimer is obtained and exhibits structure-dependent and medium-dependent characteristics. It is a helpful strategy to design a plasmonic nanostructure for implementing multiple Fano resonances in practical applications.
|
Received: 04 June 2017
Revised: 03 August 2017
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
73.22.Lp
|
(Collective excitations)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61320106014, 61675104, and 11474041), the Open Fund of Key Subject of Zhejiang Province, China (Grant Nos. xkzwl12, xkzwl1521, and xkzwl1522), and Ningbo University, China. |
Corresponding Authors:
Jun Zhou
E-mail: zhoujun@nbu.edu.cn
|
Cite this article:
Han-Hua Zhong(钟汉华), Jian-Hong Zhou(周见红), Chen-Jie Gu(顾辰杰), Mian Wang(王勉), Yun-Tuan Fang(方云团), Tian Xu(许田), Jun Zhou(周骏) Characteristics and mechanism analysis of Fano resonances in Π-shaped gold nano-trimer 2017 Chin. Phys. B 26 127301
|
[1] |
Fano U 1961 Phys. Rev. 124 1866
|
[2] |
Kobayashi K, Aikawa H, Sano A, Katsumoto S and Iye Y 2004 Phys. Rev. B 70 035319
|
[3] |
Zhang W W, Feng Y M, Zhang Y X, Chen W L and Lin W 2015 J. Phys. D:Appl. Phys. 48 275102
|
[4] |
Miroshnichenko A E and Kivshar Y S 2005 Phys. Rev. E 72 056611
|
[5] |
Ye J, Wen F, Sobhani H, Lassiter J B, Dorpe P V, Nordlander P and Halas N J 2012 Nano Lett. 12 1660
|
[6] |
Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H and Sun Z R 2013 Sensors 13 11350
|
[7] |
Romani E C, Vitoreti D, Gouvêa P M, Caldas P G, Prioli R, Paciornik S, Fokine M, Braga M B, Gomes S L and Carvalho I C 2012 Opt. Express 20 5429
|
[8] |
Peña-Rodríguez O Rivera A Campoy-Quiles M and Pal U 2013 Nanoscale 5 209
|
[9] |
Chen J, Shen Q, Chen Z, Wang Q G, Tang C J and Wang Z L 2012 J. Chem. Phys. 136 214703
|
[10] |
Wang B B, Zhou J, Zhang H P and Chen J P 2014 Chin. Phys. B 23 087303
|
[11] |
Liu S D, Yang Z, Liu R P and Li X Y 2011 J. Phys. Chem. C 115 24469
|
[12] |
Chen L Y, Tang Z X, Gao J L, Li D Y, Lei C X, Cheng Z Z, Tang S L and Du Y W 2016 Chin. Phys. B 25 113301
|
[13] |
Hao F, Nordlander P, Sonnefraud Y, Dorpe P V and Maier S A 2009 ACS Nano 3 643
|
[14] |
Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A, Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2010 ACS Nano 4 1664
|
[15] |
Zhang Y, Jia T Q, Zhang H M and Xu Z Z 2012 Opt. Lett. 37 4919
|
[16] |
Cetin A E and Altug H 2012 ACS Nano 6 9989
|
[17] |
Fu Y H, Zhang J B, Yu Y F and Luk'yanchuk B 2012 ACS Nano 6 5130
|
[18] |
Li J, Liu T, Zheng H, Dong J, He E, Gao W, Han Q, Wang C and Wu Y 2014 Plasmonics 9 1439
|
[19] |
Ci X T, Wu B T, Song M, Liu Y, Chen G X, Wu E and Zeng H P 2014 Appl. Phys. A 117 955
|
[20] |
Huang M, Chen D, Zhang L and Zhou J 2016 Chin. Phys. B 25 057303
|
[21] |
Wu D J, Jiang S M and Liu X J 2012 J. Phys. Chem. C 116 13745
|
[22] |
Metzger B, Schumacher T, Hentschel M, Lippitz M and Giessen H 2014 ACS Photon. 1 471
|
[23] |
He J N, Fan C Z, Ding P, Zhu S M and Liang E J 2016 Sci. Rep. 6 20777
|
[24] |
Shafiei F, Monticone F, Le K Q, Liu X X, Hartsfield T, Alú A and Li X 2013 Nat. Nanotechnol. 8 95
|
[25] |
Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P and Halas N J 2012 Nano Lett. 12 1058
|
[26] |
Rahmani M, Lukiyanchuk B, Ng B, KG A T, Liew Y F and Hong M H 2011 Opt. Express 19 4949
|
[27] |
Zheng C J, Jia T Q, Zhao H, Zhang S A, Feng D H and Sun Z R 2015 Appl. Phys. 49 015101
|
[28] |
Li J B, He M D, Wang X J, Peng X F and Chen L Q 2014 Chin. Phys. B 23 067302
|
[29] |
Papasimakis N and Zheludev N I 2009 Opt. Photon. News 20 22
|
[30] |
Zhang J, Xiao S, Jeppesen C, Kristensen A and Mortensen N A 2010 Opt. Express 18 17187
|
[31] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[32] |
Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano Lett. 4 899
|
[33] |
Freeman D, Madden S and Luther-Davies B 2004 Optoelectronic and Microelectronic Materials and Devices, pp. 157-160
|
[34] |
Hao F, Sonnefraud Y, Dorpe P V, Maier S A, Halas N J and Nordlander P 2008 Nano Lett. 8 3983
|
[35] |
Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P and Liu N 2010 Nano Lett. 10 2721
|
[36] |
Yang D J, Yang Z J, Li Y Y, Zhou L, Hao Z H and Wang Q Q 2015 Plasmonics 10 263
|
[37] |
Wang J, Fan C, He J, Ding P, Liang E and Xue Q 2013 Opt. Express 21 2236
|
[38] |
Yin L Y, Huang Y H, Wang X, Ning S T and Liu S D 2014 AIP Advances 4 077113.
|
[39] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[40] |
Knight M W and Halas N J 2008 New J. Phys. 10 105006
|
[41] |
Stratton J A 1941 Electromagnetic Theory (New-York:McGrow-Hill)
|
[42] |
Niu L, Zhang J B, Fu Y H, Kulkarni S and Lukyanchuk B 2011 Opt. Express 19 22974
|
[43] |
Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P and Capasso F 2010 Nano Lett. 10 4680
|
[44] |
Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A, Lagae L and Moshchalkov V V 2011 Nano Lett. 11 391
|
[45] |
Sun Y and Xia Y 2003 Analyst 6 686
|
[46] |
Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J and Xia Y 2005 Nano Lett. 5 2034
|
[47] |
Chong K E, Orton H W, Staude I, Decker M, Miroshnichenko A E, Brener I, Kivshar Y S and Neshev D N 2017 Phil. Trans. R. Soc. A 375 20160070
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|