Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027803    DOI: 10.1088/1674-1056/ac3734
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents

Simei Sun(孙四梅)1,†, Song Zhang(张嵩)2,‡, Jiao Song(宋娇)1, Xiaoshan Guo(郭小珊)1, Chao Jiang(江超)1, Jingyu Sun(孙静俞)3, and Saiyu Wang(王赛玉)1
1 Huangshi Key Laboratory of Photoelectric Technology and Materials, College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China;
2 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
Abstract  The excited-state intramolecular proton transfer of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents is investigated using ultrafast femtosecond transient absorption spectroscopy combined with quantum chemical calculations. Conformational conversion from the syn-enol configuration to the keto configuration is proposed as the mechanism of excited-state intramolecular proton transfer. The duration of excited-state intramolecular proton transfer is measured to range from 50 fs to 200 fs in different solvents. This time is strongly dependent on the calculated energy gap between the N-S0 and T-S1 structures in the S1 state. Along the proton transfer reaction coordinate, the vibrational relaxation process on the S1 state potential surface is observed. The duration of the vibrational relaxation process is determined to be from 8.7 ps to 35 ps dependent on the excess vibrational energy.
Keywords:  proton transfer      vibrational relaxation      femtosecond transient absorption spectroscopy      quantum chemical calculations  
Received:  29 July 2021      Revised:  15 October 2021      Accepted manuscript online:  06 November 2021
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  82.53.Ps (Femtosecond probing of biological molecules)  
  82.53.Uv (Femtosecond probes of molecules in liquids)  
  87.15.ag (Quantum calculations)  
Fund: Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. 2020CFB468), the Guiding Project of Scientific Research Plan of Department of Education of Hubei Province, China (Grant No. B2020136), and the National Key Research and Development Program of China (Grant No. 2019YFA0307700), and the National Natural Science Foundation of China (Grant Nos. 11974381, 11674355, and 21507027).
Corresponding Authors:  Simei Sun, Song Zhang     E-mail:  simeisun@hbnu.edu.cn;zhangsong@wipm.ac.cn

Cite this article: 

Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉) Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents 2022 Chin. Phys. B 31 027803

[1] Formosinho S J and Arnaut L G 1993 J. Photoch. Photobio. A 75 21
[2] Chen W, Wright B D and Pang Y 2012 Chem. Commun. 48 3824
[3] Patil V S, Padalkar V S, Tathe A B and Sekar N 2013 Dyes Pigm. 98 507
[4] Kim S, Seo J, Jung H K, Kim J J and Park S Y 2005 Adv. Mater. 17 2077
[5] Park S, Kim S, Seo J and Park S Y 2008 Macromol. Res. 16 385
[6] Park S, Seo J, Kim S H and Park S Y 2008 Adv. Funct. Mater. 18 726
[7] Wu J, Liu W, Ge J, Zhang H and Wang P 2011 Chem. Soc. Rev. 40 3483
[8] Zhao J, Ji S, Chen Y, Guo H and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
[9] Rodembusch F S, Leusin F P, da Costa Medina L F, Brandelli A and Stefani V 2005 Photoch. Photobio. Sci. 4 254
[10] Abou-Zied O K 2012 Phys. Chem. Chem. Phys. 14 2832
[11] Sastre R and Costela A 1995 Adv. Mater. 7 198
[12] Costela A, Garcia-Moreno I, Figuera J M, Amat-Guerri F and Sastre R 1996 Appl. Phys. Lett. 68 593
[13] Fluegge A P, Waiblinger F, Stein M, Keck J, Kramer H E A, Fischer P, Wood M G, DeBellis A D, Ravichandran R and Leppard D 2007 J. Phys. Chem. A 111 9733
[14] Lim S J, Seo J and Park S Y 2006 J. Am. Chem. Soc. 128 14542
[15] Mutai T, Tomoda H, Ohkawa T, Yabe Y and Araki K 2008 Angew. Chem. Int. Ed. Engl. 47 9522
[16] You Y, Seo J, Kim S H, Kim K S, Ahn T K, Kim D and Park S Y 2008 Inorg. Chem. 47 1476
[17] Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J and Park S Y 2009 J. Am. Chem. Soc. 131 14043
[18] Zhao J, Chen J, Liu J and Hoffmann M R 2015 Phys. Chem. Chem. Phys. 17 11990
[19] Zhao J, Dong H and Zheng Y 2018 J. Lumin. 195 228
[20] štacko P, Kistemaker J C M, van Leeuwen T, Chang M C, Otten E and Feringa B L 2017 Science 356 964
[21] Ríos Vázquez S, Ríos Rodríguez M C, Mosquera M and Rodríguez-Prieto F 2007 J. Phys. Chem. A 111 1814
[22] Duarte L, Germino J C, Braga C A, Barboza C A, Atvars T D Z, Santos F D S and Rodembusch F S 2018 Photoch. Photobio. Sci. 17 231
[23] Liu Y H, Wang S M, Zhu C and Lin S H 2017 New J. Chem. 41 8437
[24] Yang D, Zhao J, Yang G, Song N, Zheng R and Wang Y 2017 J. Mol. Liq. 241 1003
[25] Zhao J, Dong H and Zheng Y 2018 J. Phys. Chem. A 122 1200
[26] Yang D, Zhao J, Yang G, Song N, Zheng R and Wang Y 2017 Org. Chem. Front. 4 1935
[27] Krishnamurthy M and Dogra S K 1986 J. Photochem. 32 235
[28] Chen W H and Pang Y 2010 Tetrahedron Lett. 51 1914
[29] Barbatti M, Aquino A J, Lischka H, Schriever C, Lochbrunner S and Riedle E 2009 Phys. Chem. Chem. Phys. 11 1406
[30] Kungwan N, Plasser F, Aquino A J, Barbatti M, Wolschann P and Lischka H 2012 Phys. Chem. Chem. Phys. 14 9016
[31] Walter J L and Freiser H 1953 Anal. Chem. 25 127
[32] Roberts E L, Dey J and Warner I M 1997 J. Phys. Chem. A 101 5296
[33] Ohshima A, Momotake A, Nagahata R and Arai T 2005 J. Phys. Chem. A 109 9731
[34] Abou-Zied O K 2007 Chem. Phys. 337 1
[35] Daengngern R and Kungwan N 2014 Chem. Phys. Lett. 609 147
[36] Ormson S M and Brown R G 1994 Prog. React. Kinet. 19 45
[37] Ríos Vázquez S, Ríos Rodríguez M C, Mosquera M and Rodríguez-Prieto F 2008 J. Phys. Chem. A 112 376
[38] Abou-Zied O K, Jimenez R, Thompson E H Z, Millar D P and Romesberg F E 2002 J. Phys. Chem. A 106 3665
[39] Zhong D, Douhal A and Zewail A H 2000 Proc. Natl. Acad. Sci. USA 97 14056
[40] Taki M, Wolford J L and O'Halloran T V 2004 J. Am. Chem. Soc. 126 712
[41] Padalkar V S, Ramasami P and Sekar N 2014 J. Lumin. 146 527
[42] Ogawa A K, Abou-Zied O K, Tsui V, Jimenez R, Case D A and Romesberg F E 2000 J. Am. Chem. Soc. 122 9917
[43] Zhang G, Wang H, Yu Y, Xiong F, Tang G and Chen W 2003 Appl. Phys. B 76 677
[44] Alarcos N, Gutierrez M, Liras M, Sanchez F, Moreno M and Douhal A 2015 Phys. Chem. Chem. Phys. 17 14569
[45] Alarcos N, Gutierrez M, Liras M, Sanchez F and Douhal A 2015 Phys. Chem. Chem. Phys. 17 16257
[46] Lu X, Zhai Y, Song P and Zhang M 2018 Struct. Chem. 29 1655
[47] Kim C H, Park J, Seo J, Park S Y and Joo T 2010 J. Phys. Chem. A 114 5618
[48] Azarias C, Budzak S, Laurent A D, Ulrich G and Jacquemin D 2016 Chem. Sci. 7 3763
[49] Alarcos N, Gutierrez M, Liras M, Sanchez F and Douhal A 2015 Photoch. Photobio. Sci. 14 1306
[50] Wang H, Zhang H, Abou-Zied O K, Yu C, Romesberg F E and Glasbeek M 2003 Chem. Phys. Lett. 367 599
[51] Corbellini V A, Scroferneker M L, Carissimi M, Rodembusch F S and Stefani V 2010 J. Photoch. Photobio. B 99 126
[52] Rodembusch F S, Leusin F P, Campo L F and Stefani V 2007 J. Lumin. 126 728
[53] Zhang S, Sun S, Zhou M, Wang L and Zhang B 2017 Sci. Rep. 7 43419
[54] Sun S, Qin C, Liu H and Jiang C 2020 Spectrochim. Acta A 234 118200
[55] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT.
[56] Tian L 2019 Molclus program, Version 1.8.9 (accessed 2019-Sep-28)
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[4] Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
Zhengran Wang(王正然), Qiao Zhou(周悄), Bifa Cao(曹必发), Bo Li(栗博), Lixia Zhu(朱丽霞), Xinglei Zhang(张星蕾), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2022, 31(4): 048202.
[5] A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives
Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华). Chin. Phys. B, 2022, 31(3): 038202.
[6] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[7] Quantum nature of proton transferring across one-dimensional potential fields
Cheng Bi(毕成), Quan Chen (陈泉), Wei Li(李伟), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(4): 046601.
[8] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[9] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[10] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[11] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[12] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[13] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[14] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[15] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
No Suggested Reading articles found!