Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057303    DOI: 10.1088/1674-1056/25/5/057303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure

Meng Huang(黄萌)1, Dong Chen(陈栋)2, Li Zhang(张利)2, Jun Zhou(周骏)2
1. College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China;
2. Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  A gold dimer structure consisting of a notched triangle nanoslice and a rectangle nanorod is proposed to produce distinct Fano resonance. Owing to the coupling between the dipole plasmon mode of the nanorod and the dipole or quadrupole plasmon mode of the nanoslice, the extinction spectrum with a deep Fano dip is formed and can be well fitted by the Fano interference model for different geometry parameters. In addition, Fano resonance of the gold dimer nanostructure also intensely depends on the polarization direction of incident light. Moreover, Fano resonance of the triangle-rod trimer is also analyzed by adding another nanorod into the former dimer and exhibits the splitting of plasmonic resonant peak in high order coupling modes. The plasmonic hybridizations in these nanostructures have been analyzed for revealing the physical origin of the Fano resonance.
Keywords:  surface plasmon      Fano resonance      dimer      trimer  
Received:  10 November 2015      Revised:  13 January 2016      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  87.85.fk (Biosensors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61275153) and the Natural Science Foundation of Zhejiang Provice, China (Grant No. LY12A04002).
Corresponding Authors:  Meng Huang     E-mail:  xdxhuang@163.com

Cite this article: 

Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏) Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure 2016 Chin. Phys. B 25 057303

[1] Krerbig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
[2] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[3] Mulvaney P 1996 Langmuir 12 788
[4] Jain P K, Huang X, EI-Sayed I H and EI-Sayed M A 2008 Acc. Chem. Res. 41 1578
[5] Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano. Lett. 5 899
[6] Jana N R, Gearheart L and Murphy C J 2001 Langmuir 17 6782
[7] Nikoobakht B and EI-Sayed M A 2003 Chem. Mater. 15 1957
[8] Aizpurua J, Hanarp P, Sutherland D S, Kall M, Bryant G W and de Garcia A F J 2003 Phys. Rev. Lett. 90 057401
[9] Liao Z W, Huang Y Z, Wang X Y, Chau I Y Y, Wang S X and Wen W J 2014 Chin. Phys. Lett. 31 67803
[10] Hanarp P, Kall M and Sutherland D S 2003 J. Phys. Chem. 107 5768
[11] Sherry L J, Chang S H, Schatz G C, van Duyne R P, Wiley B J and Xia Y 2005 Nano. Lett. 5 2034
[12] Wang H, Wu Y, Lassiter B, Nehl C L, Hafner J H, Nordlander P and Halas N J 2006 Proc. Natl. Acad. Sci. USA 103 10856
[13] Pena-Rodriguez O, Rivera A, Campoy-Quiles M and Pal U 2013 Nanoscale 5 209
[14] Qian J, Li Y D, Chen J, Xu J J and Sun Q 2014 J. Phys. Chem. C 118 8581
[15] Kottmann J and Martin O 2001 Opt. Express 8 655
[16] Yang Z J, Zhang Z S, Hao Z H and Wang Q Q 2012 Opt. Lett. 37 3675
[17] Verellen N, van Dorpe P, Vercruysse D, Vandenbosch G A and Moshchalkov V V 2011 Opt. Express 19 11034
[18] Khan A D, Khan S D, Khan R, Ahmad N, Ali A, Khalil A and Khan F A 2014 Plasmonics 9 1091
[19] Le F, Brandl D W, Urzhumov Y A, Aizpurua J and Nordlander P 2008 ACS Nano 2 707
[20] Christ A, Solak H H, Gippius N A, Tikhodeev S G and Martin O J F 2007 Phys. Rev. B 76 201405
[21] Christ A, Martin O J F, Einci Y, Gippius N A and Tikhodeev S G 2008 Nano. Lett. 8 2171
[22] Yanchuk B L, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[23] Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P and Halas N J 2012 Nano. Lett. 12 1660
[24] Liu S, Yang Z, Liu R and Li X 2011 J. Phys. Chem. C 115 24469
[25] Hao F, Sonnefraud Y, van Dorpe P, Maier S A, Halas N J and Nordlander P 2008 Nano. Lett. 8 3983
[26] Zhang J, Xiao S, Jeppesen C, Kristensen A and Mortensen N A 2010 Opt. Express 18 17187
[27] Chen J, Wang P, Chen C, Lu Y, Ming H and Zhan Q 2011 Opt. Express 19 5970
[28] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
[29] Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. B 80 035104
[30] Sassan S, Young-wook J, Prashant K, Jain A and Paul A 2010 Nano. Lett. 10 2655
[31] Shao L, Fang C H, Chen H J, Yat C M, Wang J F and Lin H Q 2012 Nano. Lett. 12 1424
[32] Yun B F, Hu G H, Cong J W and Cui Y P 2014 Plasmonics 9 691
[33] Habteyes T G, Dhuey S, Cabrini S, Schuck P J and Leone S R 2011 Nano. Lett. 11 1819
[34] Yang D J, Yang Z J, Li Y Y, Zhou L, Hao Z H and Wang Q Q 2015 Plasmonics 10 263
[35] Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H and Sun Z R 2013 Sensors 13 11350
[36] Wang W D, Li Y D, Peng J Y, Chen Z Q, Qian J, Chen J, Xu J J and Sun Q 2014 J. Opt. 16 227
[37] Pena-Rodriguez O, Pal U, Campoy-Quiles M, Rodriguez-Fernandez L, Garriga M and Alonso M I 2011 J. Phys. Chem. C 115 6410
[38] Contreras A M, Grunes J, Yan X M, Liddle A and Somorjai G A 2005 Catalysis Lett. 100 115
[39] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[40] Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill) p. 206
[41] Brown L V, Sobhani H, Lassiter J B, Nordlander P and Halas N J 2010 ACS Nano 4 819
[42] Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C and Brevet P F 2010 Nano Lett. 10 1717
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[7] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[8] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[11] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[12] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[13] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[14] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[15] Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film
Xiangxian Wang(王向贤), Jian Zhang(张健), Jiankai Zhu(朱剑凯), Zao Yi(易早), and Jianli Yu(余建立). Chin. Phys. B, 2022, 31(2): 024210.
No Suggested Reading articles found!