CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure |
Meng Huang(黄萌)1, Dong Chen(陈栋)2, Li Zhang(张利)2, Jun Zhou(周骏)2 |
1. College of Electrical and Information Engineering, Quzhou University, Quzhou 324000, China; 2. Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract A gold dimer structure consisting of a notched triangle nanoslice and a rectangle nanorod is proposed to produce distinct Fano resonance. Owing to the coupling between the dipole plasmon mode of the nanorod and the dipole or quadrupole plasmon mode of the nanoslice, the extinction spectrum with a deep Fano dip is formed and can be well fitted by the Fano interference model for different geometry parameters. In addition, Fano resonance of the gold dimer nanostructure also intensely depends on the polarization direction of incident light. Moreover, Fano resonance of the triangle-rod trimer is also analyzed by adding another nanorod into the former dimer and exhibits the splitting of plasmonic resonant peak in high order coupling modes. The plasmonic hybridizations in these nanostructures have been analyzed for revealing the physical origin of the Fano resonance.
|
Received: 10 November 2015
Revised: 13 January 2016
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
87.85.fk
|
(Biosensors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61275153) and the Natural Science Foundation of Zhejiang Provice, China (Grant No. LY12A04002). |
Corresponding Authors:
Meng Huang
E-mail: xdxhuang@163.com
|
Cite this article:
Meng Huang(黄萌), Dong Chen(陈栋), Li Zhang(张利), Jun Zhou(周骏) Tunable Fano resonances and plasmonic hybridization of gold triangle-rod dimer nanostructure 2016 Chin. Phys. B 25 057303
|
[1] |
Krerbig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer)
|
[2] |
Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
|
[3] |
Mulvaney P 1996 Langmuir 12 788
|
[4] |
Jain P K, Huang X, EI-Sayed I H and EI-Sayed M A 2008 Acc. Chem. Res. 41 1578
|
[5] |
Nordlander P, Oubre C, Prodan E, Li K and Stockman M I 2004 Nano. Lett. 5 899
|
[6] |
Jana N R, Gearheart L and Murphy C J 2001 Langmuir 17 6782
|
[7] |
Nikoobakht B and EI-Sayed M A 2003 Chem. Mater. 15 1957
|
[8] |
Aizpurua J, Hanarp P, Sutherland D S, Kall M, Bryant G W and de Garcia A F J 2003 Phys. Rev. Lett. 90 057401
|
[9] |
Liao Z W, Huang Y Z, Wang X Y, Chau I Y Y, Wang S X and Wen W J 2014 Chin. Phys. Lett. 31 67803
|
[10] |
Hanarp P, Kall M and Sutherland D S 2003 J. Phys. Chem. 107 5768
|
[11] |
Sherry L J, Chang S H, Schatz G C, van Duyne R P, Wiley B J and Xia Y 2005 Nano. Lett. 5 2034
|
[12] |
Wang H, Wu Y, Lassiter B, Nehl C L, Hafner J H, Nordlander P and Halas N J 2006 Proc. Natl. Acad. Sci. USA 103 10856
|
[13] |
Pena-Rodriguez O, Rivera A, Campoy-Quiles M and Pal U 2013 Nanoscale 5 209
|
[14] |
Qian J, Li Y D, Chen J, Xu J J and Sun Q 2014 J. Phys. Chem. C 118 8581
|
[15] |
Kottmann J and Martin O 2001 Opt. Express 8 655
|
[16] |
Yang Z J, Zhang Z S, Hao Z H and Wang Q Q 2012 Opt. Lett. 37 3675
|
[17] |
Verellen N, van Dorpe P, Vercruysse D, Vandenbosch G A and Moshchalkov V V 2011 Opt. Express 19 11034
|
[18] |
Khan A D, Khan S D, Khan R, Ahmad N, Ali A, Khalil A and Khan F A 2014 Plasmonics 9 1091
|
[19] |
Le F, Brandl D W, Urzhumov Y A, Aizpurua J and Nordlander P 2008 ACS Nano 2 707
|
[20] |
Christ A, Solak H H, Gippius N A, Tikhodeev S G and Martin O J F 2007 Phys. Rev. B 76 201405
|
[21] |
Christ A, Martin O J F, Einci Y, Gippius N A and Tikhodeev S G 2008 Nano. Lett. 8 2171
|
[22] |
Yanchuk B L, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
|
[23] |
Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P and Halas N J 2012 Nano. Lett. 12 1660
|
[24] |
Liu S, Yang Z, Liu R and Li X 2011 J. Phys. Chem. C 115 24469
|
[25] |
Hao F, Sonnefraud Y, van Dorpe P, Maier S A, Halas N J and Nordlander P 2008 Nano. Lett. 8 3983
|
[26] |
Zhang J, Xiao S, Jeppesen C, Kristensen A and Mortensen N A 2010 Opt. Express 18 17187
|
[27] |
Chen J, Wang P, Chen C, Lu Y, Ming H and Zhan Q 2011 Opt. Express 19 5970
|
[28] |
Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
|
[29] |
Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. B 80 035104
|
[30] |
Sassan S, Young-wook J, Prashant K, Jain A and Paul A 2010 Nano. Lett. 10 2655
|
[31] |
Shao L, Fang C H, Chen H J, Yat C M, Wang J F and Lin H Q 2012 Nano. Lett. 12 1424
|
[32] |
Yun B F, Hu G H, Cong J W and Cui Y P 2014 Plasmonics 9 691
|
[33] |
Habteyes T G, Dhuey S, Cabrini S, Schuck P J and Leone S R 2011 Nano. Lett. 11 1819
|
[34] |
Yang D J, Yang Z J, Li Y Y, Zhou L, Hao Z H and Wang Q Q 2015 Plasmonics 10 263
|
[35] |
Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H and Sun Z R 2013 Sensors 13 11350
|
[36] |
Wang W D, Li Y D, Peng J Y, Chen Z Q, Qian J, Chen J, Xu J J and Sun Q 2014 J. Opt. 16 227
|
[37] |
Pena-Rodriguez O, Pal U, Campoy-Quiles M, Rodriguez-Fernandez L, Garriga M and Alonso M I 2011 J. Phys. Chem. C 115 6410
|
[38] |
Contreras A M, Grunes J, Yan X M, Liddle A and Somorjai G A 2005 Catalysis Lett. 100 115
|
[39] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[40] |
Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill) p. 206
|
[41] |
Brown L V, Sobhani H, Lassiter J B, Nordlander P and Halas N J 2010 ACS Nano 4 819
|
[42] |
Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C and Brevet P F 2010 Nano Lett. 10 1717
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|