|
|
Chiral p-wave pairing of ultracold fermionic atoms due to a quadratic band touching |
Hai-Xiao Wang(王海啸), Zi-Heng Liu(刘子衡), Jian-Hua Jiang(蒋建华) |
College of Physics, Optoelectronics and Energy, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract We study the superfuild ground state of ultracold fermions in optical lattices with a quadratic band touching. Examples are a checkerboard lattice around half filling and a kagome lattice above one third filling. Instead of pairing between spin states, here we focus on pairing interactions between different orbital states. We find that our systems have only odd-parity (orbital) pairing instability while the singlet (orbital) pairing instability vanishes thanks to the quadratic band touching. In the mean field level, the ground state is found to be a chiral p-wave pairing superfluid (mixed with finite f-wave pairing order-parameters) which supports Majorana fermions.
|
Received: 30 November 2017
Revised: 21 December 2017
Accepted manuscript online:
|
PACS:
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
67.85.Lm
|
(Degenerate Fermi gases)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11675116) and the Soochow University, China. |
Corresponding Authors:
Jian-Hua Jiang
E-mail: jianhuajiang@suda.edu.cn
|
About author: 74.20.Rp; 67.85.Lm; 03.65.Vf |
Cite this article:
Hai-Xiao Wang(王海啸), Zi-Heng Liu(刘子衡), Jian-Hua Jiang(蒋建华) Chiral p-wave pairing of ultracold fermionic atoms due to a quadratic band touching 2018 Chin. Phys. B 27 027402
|
[1] |
Moore G and Read N 1991 Nucl. Phys. B 360 362
|
[2] |
Kitaev A 2006 Ann. Phys. 321 2
|
[3] |
Read N and Green D 2000 Phys. Rev. B 61 10267
|
[4] |
Ivanov D A 2001 Phys. Rev. Lett. 86 268
|
[5] |
Stern A, von Oppen F and Mariani E 2004 Phys. Rev. B 70 205338
|
[6] |
Stern A 2010 Nature 464 187
|
[7] |
Freedman M, Kitaev A, Larsen M and Wang Z 2003 Bull. Am. Math. Soc. 40 31
|
[8] |
Kitaev A Y 2003 Ann. Phys. 303 2
|
[9] |
Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
|
[10] |
Tewari S, Das Sarma S, Nayak C, Zhang C and Zoller P 2007 Phys. Rev. Lett. 98 010506
|
[11] |
Sato M 2003 Phys. Lett. B 575 126
|
[12] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[13] |
Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403
|
[14] |
Akhmerov A R, Nilsson J and Beenakker C W J 2009 Phys. Rev. Lett. 102 216404
|
[15] |
Lu C K and Herbut I F 2010 Phys. Rev. B 82 144505
|
[16] |
Sato M and Fujimoto S 2009 Phys. Rev. B 79 094504
|
[17] |
Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
|
[18] |
Alicea J 2010 Phys. Rev. B 81 125318
|
[19] |
Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521
|
[20] |
Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
|
[21] |
Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516
|
[22] |
Zhang C, Tewari S, Lutchyn R M and Das Sarma S 2008 Phys. Rev. Lett. 101 160401
|
[23] |
Sato M, Takahashi Y and Fujimoto S 2009 Phys. Rev. Lett. 103 020401
|
[24] |
Zhu S L, Shao L B, Wang Z D and Duan L M 2011 Phys. Rev. Lett. 106 100404
|
[25] |
Jiang J H and Wu S 2013 J. Phys.:Condens. Matter 25 055701
|
[26] |
Beenakker C W J 2013 Ann. Rev. Con. Mat. Phys. 4 113
|
[27] |
Alicea J 2012 Rep. Prog. Phys. 75 076501
|
[28] |
Cheng M, Sun K, Galitski V and Das Sarma S 2010 Phys. Rev. B 81 024504
|
[29] |
Sun K, Yao H, Fradkin E and Kivelson SA 2009 Phys. Rev. Lett. 103 046811
|
[30] |
Sun K, Liu W V, Hemmerich A and Das Sarma S 2012 Nat. Phys. 8 67
|
[31] |
Ölschläger M, Wirth G, Kock T and Hemmerich A 2012 Phys. Rev. Lett. 108 075302
|
[32] |
Soltan-Panahi P, Struck J, Hauke P, Bick A, Plenkers W, Meineke G,Becker C, Windpassinger P, Lewenstein M and Sengstock K 2011 Nat. Phys. 7 434
|
[33] |
Soltan-Panahi P, Lühmann D S, Struck J, Windpassinger P and Seng-stock K 2012 Nat. Phys. 8 71
|
[34] |
Lee W C, Wu C and Das Sarma S 2010 Phys. Rev. A 82 053611
|
[35] |
Hung H H, Lee W C and Wu C 2011 Phys. Rev. B 83 144506
|
[36] |
Wirth G, Ölschläger M and Hemmerich A 2011 Nat. Phys. 7 147
|
[37] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[38] |
Lewenstein M, Santos L, Baranov M A and Fehrmann H 2004 Phys. Rev. Lett. 92 050401
|
[39] |
Ni K K, Ospelkaus S, de Miranda M H G, Pe'er A, Neyenhuis B, ZirbelJ J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
|
[40] |
Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R and Weidemüller M 2008 Phys. Rev. Lett. 101 133004
|
[41] |
Micheli A, Brennen G K and Zoller P 2006 Nat. Phys. 2 341
|
[42] |
Micheli A, Pupillo G, Büchler H P and Zoller P 2007 Phys. Rev. A 76 043604
|
[43] |
Miyake K 1983 Prog. Theor. Phys. 69 1794
|
[44] |
Cooper N R and Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302
|
[45] |
Wen J, Rüegg A, Wang C C J and Fiete G A 2010 Phys. Rev. B 82 075125
|
[46] |
Uebelacker S and Honerkamp C 2011 Phys. Rev. B 84 205122
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|