Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018801    DOI: 10.1088/1674-1056/ac0bb0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3

Tao Wang(汪涛)1,3,4,†, Gui-Jiang Xiao(肖贵将)1, Ren Sun(孙韧)2, Lin-Bao Luo(罗林保)1, and Mao-Xiang Yi(易茂祥)1
1 School of Microelectronics, Hefei University of Technology, Hefei 230601, China;
2 School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China;
3 School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China;
4 National Engineering Laboratory of Special Display Technology, Hefei 230009, China
Abstract  To enhance device performance and reduce fabrication cost, a series of electron transporting material (ETM)-free perovskite solar cells (PSCs) is developed by TCAD Atlas. The accuracy of the physical mode of PSCs is verified, due to the simulations of PEDOT:PSS-CH3NH3PbI3-PCBM and CuSCN-CH3NH3PbI3-PCBM p-i-n PSCs showing a good agreement with experimental results. Different hole transporting materials (HTMs) are selected and directly combined with n-CH3NH3PbI3, and the CuSCN-CH3NH3PbI3 is the best in these ETM-free PSCs. To further study the CuSCN-CH3NH3PbI3 PSC, the influences of back electrode material, gradient band gap, thickness, doping concentration, and bulk defect density on the performance are investigated. Energy band and distribution of electric field are utilized to optimize the design. As a result, the efficiency of CuSCN-CH3NH3PbI3 PSC is achieved to be 26.64%. This study provides the guideline for designing and improving the performances of ETM-free PSCs.
Keywords:  electron transporting material (ETM)-free perovskite solar cell      inorganic hole transporting material (HTM)      back electrode      gradient band gap  
Received:  22 March 2021      Revised:  10 May 2021      Accepted manuscript online:  16 June 2021
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  88.40.fc (Modeling and analysis)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. JD2020JGPY0010) and the China Post-Doctoral Science Foundation (Grant No. 2020M671834).
Corresponding Authors:  Tao Wang     E-mail:  taowang@hfut.edu.cn

Cite this article: 

Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥) High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3 2022 Chin. Phys. B 31 018801

[1] Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M and Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565
[2] Heo J H, Han H J, Kim D, Ahn T K and Im S H 2015 Energy Environ. Sci. 8 1602
[3] Meng L, You J, Guo T F and Yang Y 2016 Acc. Chem. Res. 49 155
[4] Fu Q, Tang X L, Huang B, Hu T, Tan L C, Chen L and Chen Y W 2018 Adv. Sci. 5 1700387
[5] Wang T, Wang P, Ding K and Liang Q 2019 Optik 179 1019
[6] Said A A, Xie J and Zhang Q 2019 Small 15 1900854
[7] Fan B, He Z, Xiong J, Zhao Q, Dai Z, Yang B, Xue X, Cai P, Zhan S, Tong S, Yang J and Zhang J 2019 Sol. Energy 189 307
[8] Deng Y, Xiao Z and Huang J 2015 Adv. Energy Mater. 5 1500721
[9] Chen T, Shi T, Li X, Zheng J, Fan W, Ni B, Wang Y, Dai J and Xiao Z 2018 Solar RRL 2 1800167
[10] Sahu A and Dixit A 2018 Curr. Appl. Phys 18 1583
[11] Niu G D, Li W Z, Li J W and Wang L D 2016 Sci. China Mater. 59 728
[12] Elseman A M, Sajid S, Shalan A E, Mohamed S A and Rashad M M 2019 Appl. Phys. A 125 464
[13] Chen J and Park N G 2018 J. Phys. Chem. C 122 14039
[14] Minemoto T and Murata M 2014 J. Appl. Phys. 116 054505
[15] Alnuaimi A, Almansouri I and Nayfeh A 2016 J. Comput. Electron. 15 1110
[16] Karimi E and Ghorashi S M B 2017 Optik 130 650
[17] Parhizkar M, Singh S, Nayak P K, Kumar N, Muthe K P, Gupta S K, Srinivasa R S, Talwar S S and Major S S 2005 Colloids and Surfaces A: Physicochem. Eng. Aspects 257-258 277
[18] Shen Y, Guo M, Xia X and Shao G 2015 Acta Mater. 85 122
[19] Hossain M I, Alharbi F H and Tabet N 2015 Sol. Energy 120 370
[20] Zhao P, Liu Z, Lin Z, Chen D, Su J, Zhang C, Zhang J, Chang J and Hao Y 2018 Sol. Energy 169 11
[21] Azri F, Meftah A, Sengouga N and Meftah A 2019 Sol. Energy 181 372
[22] Chen C W, Hsiao S Y, Chen C Y, Kang H W, Huang Z Y and Lin H W 2015 J. Mater. Chem. A 3 9152
[23] Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T and Meyer J 2011 Adv. Energy Mater. 1 813
[24] Abdulkarim Y I, Deng L, Muhammad F F and He L 2019 Results Phys. 13 102338
[25] Claudia M, Francesco B, Cristy L A R, Mirco D I, Paolo S and Alberto M 2011 Sol. Energy Mater. Sol. Cells 95 2848
[26] Ezealigo B N, Nwanya A C, Simo A, Bucher R, Osuji R U, Maaza M, Reddy M V and Ezema F I 2020 Arab. J. Chem. 13 346
[27] Kariper I A 2016 Mater. Res. 19 991
[28] Pandey R and Chaujar R 2016 Superlattice Microst. 100 656
[29] Wang H, Yu Z, Lai J, Song X, Yang X, Hagfeldt A and Sun L 2018 J. Mater. Chem. A 6 21435
[30] Du H J, Wang W C and Gu Y F 2017 Chin. Phys. B 26 028803
[31] Fu F, Pisoni S, Weiss T P, Feurer T, Wackerlin A, Fuchs P, Nishiwaki S, Zortea L, Tiwari A N and Buecheler S 2018 Adv. Sci. 5 1700675
[32] Ergen O, Gilbert S M, Pham T, Turner S J, Tan M T Z, Worsley M A and Zettl A 2016 Nat. Mater. 16 522
[33] Han Q W, Ding J, Bai Y S, Liu J, Mitzi D B and Hu J S 2018 Chem. 4 2405
[34] Wu W Q, Liao J F, Zhong J X, Xu Y F, Wang L Z and Huang J S 2020 Angew. Chem. Int. Ed. 59 20980
[35] Lin J T, Lee C T, Chen W H, Haga S W, Hu Y Y and Ho K Y 2018 IEEE J. Photovolt 8 441
[1] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[2] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[3] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[4] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[5] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[6] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[7] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[10] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[11] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[12] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[13] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
[14] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[15] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
No Suggested Reading articles found!