INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si |
Jian-Kai Xu(徐健凯)1,2,3,4, Li-Juan Jiang(姜丽娟)1,2,3,4,†, Qian Wang(王茜)1,2,3,4, Quan Wang(王权)1,5,6, Hong-Ling Xiao(肖红领)1,2,3,4, Chun Feng(冯春)1,2,3,4, Wei Li(李巍)1,2,3,4, and Xiao-Liang Wang(王晓亮)1,2,3,4 |
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China; 5 The State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; 6 Institute of Novel Semiconductors, Shandong University, Jinan 250100, China |
|
|
Abstract The effect of nitrogen flow and growth temperature on extension of GaN on Si substrate has been studied. By increasing the nitrogen flow whose outlet is located in the center of the MOCVD (metal-organic chemical vapor deposition) gas/particle screening flange and by increasing the growth temperature of HT-AlN and AlGaN buffer layers near the primary flat of the wafer, the GaN layer has extended more adequately on Si substrate. In the meantime, the surface morphology has been greatly improved. Both the AlN and GaN crystal quality uniformity has been improved. X-ray diffraction results showed that the GaN (0002) XRD FWHMs (full width at half maximum) decreased from 579 arcsec~ 1655 arcsec to around 420 arcsec.
|
Received: 19 March 2021
Revised: 15 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
78.70.Dm
|
(X-ray absorption spectra)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0402900) and the National Natural Sciences Foundation of China (Grant No. 62074144). |
Corresponding Authors:
Li-Juan Jiang, Xiao-Liang Wang
E-mail: ljjiang@semi.ac.cn;xlwang@semi.ac.cn
|
Cite this article:
Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮) Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si 2021 Chin. Phys. B 30 118101
|
[1] Hansen M, Fini P, Zhao L, Abare A C, Coldren L A, Speck J S and DenBaars S P 2000 Appl. Phys. Lett. 76 529 [2] Wu X H, Fini P, Tarsa E J, Heying B, Keller S, Mishra U K, DenBaars S P and Speck J S 1998 J. Cryst. Growth 189 231 [3] Lahréche H, Leroux M, Laügt M, Vaille M, Beaumont B and Gibart P 2000 J. Appl. Phys. 87 577 [4] Nakada N, Nakaji M, Ishikawa H, Egawa T, Umeno M and Jimbo T 2000 Appl. Phys. Lett. 76 1804 [5] Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron. Dev. 48 586 [6] Okumura H 2006 Jpn. J. Appl. Phys. 45 7565 [7] Umesh K. Mishra, Shen L K, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287 [8] Wang X L, Chen T S, Xiao H L, Tang J, Ran J X, Zhang M L, Feng C, Hou Q F, Wei M, Jiang L J, Li J M and Wang Z G 2009 Solid-State Electron. 53 332 [9] Mittereder J A, Binari S C, Klein P B, Roussos J A, Katzer D S, Storm D F, Koleske D D, Wickenden A E and Henry R L 2003 Appl. Phys. Lett. 83 1650 [10] Wang X L, Chen T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C and Li J M 2008 Solid-State Electron. 52 926 [11] Alamo J A D and Joh J 2009 Microelectron. Reliab. 49 1200 [12] Kohn E and Medjdoub F 2007 International Workshop on Physics of Semiconductor Devices, December 16-20, 2007, Mumbai, India, p. 311 [13] Tipirneni N, Koudymov A, Adivarahan V, Yang J, Simin G and Khan M A 2006 IEEE Electron. Dev. Lett. 27 716 [14] Simin G, Koudymov A, Tarakji A, Hu X, Yang J, Shur M S, Gaska R and Khan M Asif 2001 Appl. Phys. Lett. 79 2651 [15] Anderson T J, Tadjer M J, Hite J K, Greenlee J D, Koehler A D, Hobart K D and Kub F J 2015 IEEE Electron. Dev. Lett. 37 28 [16] Nakamura and Shuji 1991 Jpn. J. Appl. Phys. 30 1705 [17] Kai C, Leys M, Degroote S, Daele B V, Boeykens S, Derluyn J, Germain M, Tendeloo G V, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592 [18] Luo W J, Wang X L, Guo L C, Xiao H L, Wang C M, Ran J X, Li J P and Li J M 2008 Microelectron. J. 39 1710 [19] Wei M, Wang Xl, Pan X, Xiao H L, Wang C M, Hou Q F and Wang Z G 2011 Mater. Sci. Semicon. Process. 14 97 [20] Wei M, Wang X L, Pan X, Xiao H L, Wang C M, Yang C B and Wang Z G 2011 J. Mater. Sci. Mater. Electron. 22 1028 [21] Wei M, Wang X L, Xiao H L, Wang C M, Pan X, Hou Q F and Wang Z G 2011 Chin. Phys. Lett. 28 048102 [22] Nikishin S A, Faleev N N, Antipov V G, Francoeur S, Grave de Peralta L, Seryogin G A, Temkin H, Prokofyeva T I, Holtz M and Chu S N G 1999 Appl. Phys. Lett. 75 2073 [23] Arslan E, Ozturk M K, Teke A, Ozcelik S and Ozbay E 2008 J. Phys. D: Appl. Phys. 41 155317 [24] Chen P, Zhang R, Zhao Z M, Xi D J, Shen B, Chen Z Z, Zhou Y G, Xie S Y, Lu W F and Zheng Y D 2001 J. Cryst. Growth 225 150 [25] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713 [26] Pinos A, Tan W S, Chitnis A, Nishikawa A, Groh L, Hu C Y, Murad S and Lutgen S 2014 Phys. Status Solidi C 11 624 [27] Ji P F, Yang X L, Feng Y X, Cheng J P, Zhang J, Hu A Q, Song C Y, Wu S, Shen J F, Tang J, Tao C, Pan Y B, Wang X Q and Shen B 2017 Superlattice Microst. 104 112 [28] Lee I H, Lim S J and Park Y 2002 J. Cryst. Growth 235 73 [29] Krost A and Dadgar A 2002 Phys. Stat. Sol. 194 361 [30] Xiong J J, Tang J J, Liang T, Wang Y, Xue C Y, Shi W L and Zhang W D 2010 Appl. Surf. Sci. 257 1161 [31] Lin J H, Huang S J, Su Y K and Hsu C W 2013 J. Cryst. Growth 370 273 [32] Feng Y X, Wei H Y, Yang S Y, Chen Z, Wang L S, Kong S S, Zhao G J and Liu X L 2014 Sci. Rep. 4 6416 [33] Lu Y, Liu X L, Wang X H, Lu D C, Li D B, Han X X, Cong G W and Wang Z G 2014 J. Cryst. Growth 263 4 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|