Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118101    DOI: 10.1088/1674-1056/abff30
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si

Jian-Kai Xu(徐健凯)1,2,3,4, Li-Juan Jiang(姜丽娟)1,2,3,4,†, Qian Wang(王茜)1,2,3,4, Quan Wang(王权)1,5,6, Hong-Ling Xiao(肖红领)1,2,3,4, Chun Feng(冯春)1,2,3,4, Wei Li(李巍)1,2,3,4, and Xiao-Liang Wang(王晓亮)1,2,3,4
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China;
5 The State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
6 Institute of Novel Semiconductors, Shandong University, Jinan 250100, China
Abstract  The effect of nitrogen flow and growth temperature on extension of GaN on Si substrate has been studied. By increasing the nitrogen flow whose outlet is located in the center of the MOCVD (metal-organic chemical vapor deposition) gas/particle screening flange and by increasing the growth temperature of HT-AlN and AlGaN buffer layers near the primary flat of the wafer, the GaN layer has extended more adequately on Si substrate. In the meantime, the surface morphology has been greatly improved. Both the AlN and GaN crystal quality uniformity has been improved. X-ray diffraction results showed that the GaN (0002) XRD FWHMs (full width at half maximum) decreased from 579 arcsec~ 1655 arcsec to around 420 arcsec.
Keywords:  GaN extension      MOCVD      nitrogen flow      growth temperature  
Received:  19 March 2021      Revised:  15 April 2021      Accepted manuscript online:  08 May 2021
PACS:  81.05.Ea (III-V semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.70.Dm (X-ray absorption spectra)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0402900) and the National Natural Sciences Foundation of China (Grant No. 62074144).
Corresponding Authors:  Li-Juan Jiang, Xiao-Liang Wang     E-mail:  ljjiang@semi.ac.cn;xlwang@semi.ac.cn

Cite this article: 

Jian-Kai Xu(徐健凯), Li-Juan Jiang(姜丽娟), Qian Wang(王茜), Quan Wang(王权), Hong-Ling Xiao(肖红领), Chun Feng(冯春), Wei Li(李巍), and Xiao-Liang Wang(王晓亮) Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si 2021 Chin. Phys. B 30 118101

[1] Hansen M, Fini P, Zhao L, Abare A C, Coldren L A, Speck J S and DenBaars S P 2000 Appl. Phys. Lett. 76 529
[2] Wu X H, Fini P, Tarsa E J, Heying B, Keller S, Mishra U K, DenBaars S P and Speck J S 1998 J. Cryst. Growth 189 231
[3] Lahréche H, Leroux M, Laügt M, Vaille M, Beaumont B and Gibart P 2000 J. Appl. Phys. 87 577
[4] Nakada N, Nakaji M, Ishikawa H, Egawa T, Umeno M and Jimbo T 2000 Appl. Phys. Lett. 76 1804
[5] Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P and Mishra U K 2001 IEEE Trans. Electron. Dev. 48 586
[6] Okumura H 2006 Jpn. J. Appl. Phys. 45 7565
[7] Umesh K. Mishra, Shen L K, Kazior T E and Wu Y F 2008 Proc. IEEE 96 287
[8] Wang X L, Chen T S, Xiao H L, Tang J, Ran J X, Zhang M L, Feng C, Hou Q F, Wei M, Jiang L J, Li J M and Wang Z G 2009 Solid-State Electron. 53 332
[9] Mittereder J A, Binari S C, Klein P B, Roussos J A, Katzer D S, Storm D F, Koleske D D, Wickenden A E and Henry R L 2003 Appl. Phys. Lett. 83 1650
[10] Wang X L, Chen T S, Xiao H L, Wang C M, Hu G X, Luo W J, Tang J, Guo L C and Li J M 2008 Solid-State Electron. 52 926
[11] Alamo J A D and Joh J 2009 Microelectron. Reliab. 49 1200
[12] Kohn E and Medjdoub F 2007 International Workshop on Physics of Semiconductor Devices, December 16-20, 2007, Mumbai, India, p. 311
[13] Tipirneni N, Koudymov A, Adivarahan V, Yang J, Simin G and Khan M A 2006 IEEE Electron. Dev. Lett. 27 716
[14] Simin G, Koudymov A, Tarakji A, Hu X, Yang J, Shur M S, Gaska R and Khan M Asif 2001 Appl. Phys. Lett. 79 2651
[15] Anderson T J, Tadjer M J, Hite J K, Greenlee J D, Koehler A D, Hobart K D and Kub F J 2015 IEEE Electron. Dev. Lett. 37 28
[16] Nakamura and Shuji 1991 Jpn. J. Appl. Phys. 30 1705
[17] Kai C, Leys M, Degroote S, Daele B V, Boeykens S, Derluyn J, Germain M, Tendeloo G V, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592
[18] Luo W J, Wang X L, Guo L C, Xiao H L, Wang C M, Ran J X, Li J P and Li J M 2008 Microelectron. J. 39 1710
[19] Wei M, Wang Xl, Pan X, Xiao H L, Wang C M, Hou Q F and Wang Z G 2011 Mater. Sci. Semicon. Process. 14 97
[20] Wei M, Wang X L, Pan X, Xiao H L, Wang C M, Yang C B and Wang Z G 2011 J. Mater. Sci. Mater. Electron. 22 1028
[21] Wei M, Wang X L, Xiao H L, Wang C M, Pan X, Hou Q F and Wang Z G 2011 Chin. Phys. Lett. 28 048102
[22] Nikishin S A, Faleev N N, Antipov V G, Francoeur S, Grave de Peralta L, Seryogin G A, Temkin H, Prokofyeva T I, Holtz M and Chu S N G 1999 Appl. Phys. Lett. 75 2073
[23] Arslan E, Ozturk M K, Teke A, Ozcelik S and Ozbay E 2008 J. Phys. D: Appl. Phys. 41 155317
[24] Chen P, Zhang R, Zhao Z M, Xi D J, Shen B, Chen Z Z, Zhou Y G, Xie S Y, Lu W F and Zheng Y D 2001 J. Cryst. Growth 225 150
[25] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713
[26] Pinos A, Tan W S, Chitnis A, Nishikawa A, Groh L, Hu C Y, Murad S and Lutgen S 2014 Phys. Status Solidi C 11 624
[27] Ji P F, Yang X L, Feng Y X, Cheng J P, Zhang J, Hu A Q, Song C Y, Wu S, Shen J F, Tang J, Tao C, Pan Y B, Wang X Q and Shen B 2017 Superlattice Microst. 104 112
[28] Lee I H, Lim S J and Park Y 2002 J. Cryst. Growth 235 73
[29] Krost A and Dadgar A 2002 Phys. Stat. Sol. 194 361
[30] Xiong J J, Tang J J, Liang T, Wang Y, Xue C Y, Shi W L and Zhang W D 2010 Appl. Surf. Sci. 257 1161
[31] Lin J H, Huang S J, Su Y K and Hsu C W 2013 J. Cryst. Growth 370 273
[32] Feng Y X, Wei H Y, Yang S Y, Chen Z, Wang L S, Kong S S, Zhao G J and Liu X L 2014 Sci. Rep. 4 6416
[33] Lu Y, Liu X L, Wang X H, Lu D C, Li D B, Han X X, Cong G W and Wang Z G 2014 J. Cryst. Growth 263 4
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[3] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[4] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[5] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[6] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[7] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[8] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
[9] Effect of growth temperature of GaAsxSb1-x metamorphic buffer layer on electron mobility of InAs/AlSb heterostructures grown on Si substrate
Jing Zhang(张静), Hong-Liang Lv(吕红亮), Hai-Qiao Ni(倪海桥), Shi-Zheng Yang(杨施政), Xiao-Ran Cui(崔晓然), Zhi-Chuan Niu(牛智川), Yi-Men Zhang(张义门), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(11): 118102.
[10] Magnesium incorporation efficiencies in MgxZn1-xO films on ZnO substrates grown by metalorganic chemical vapor deposition
Qi-Chang Hu(胡启昌), Kai Ding(丁凯). Chin. Phys. B, 2017, 26(6): 068104.
[11] Semipolar (1122) and polar (0001) InGaN grown on sapphire substrate by using pulsed metal organic chemical vapor deposition
Sheng-Rui Xu(许晟瑞), Ying Zhao(赵颖), Ren-Yuan Jiang(蒋仁渊), Teng Jiang(姜腾), Ze-Yang Ren(任泽阳), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(2): 027801.
[12] Role of vacancy-type defects in magnetism of GaMnN
Hai-Ying Xing(邢海英), Yu Chen(陈雨), Chen Ji(纪骋), Sheng-Xiang Jiang(蒋盛翔), Meng-Yao Yuan(苑梦尧), Zhi-Ying Guo(郭志英), Kun Li(李琨), Ming-Qi Cui(崔明启), Guo-Yi Zhang(张国义). Chin. Phys. B, 2016, 25(6): 067503.
[13] Control of symmetric properties of metamorphic In0.27Ga0.73As layers by substrate misorientation
Shu-Zhen Yu(于淑珍), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Kui-Long Li(李奎龙),Xu-Lu Zeng(曾徐路), Yong-Ming Zhao(赵勇明), Hui Yang(杨辉). Chin. Phys. B, 2016, 25(3): 038101.
[14] Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition
Feng Guo(郭峰), Xin-Sheng Wang(汪薪生), Shi-Wei Zhuang(庄仕伟), Guo-Xing Li(李国兴), Bao-Lin Zhang(张宝林), Pen-Chu Chou(周本初). Chin. Phys. B, 2016, 25(2): 028103.
[15] High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H2O as an oxidizer
Jia-Yong Lin(林家勇), Yan-Li Pei(裴艳丽), Yi Zhuo(卓毅), Zi-Min Chen(陈梓敏), Rui-Qin Hu(胡锐钦), Guang-Shuo Cai(蔡广烁), Gang Wang(王钢). Chin. Phys. B, 2016, 25(11): 118506.
No Suggested Reading articles found!