Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118102    DOI: 10.1088/1674-1056/ab4d49
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of growth temperature of GaAsxSb1-x metamorphic buffer layer on electron mobility of InAs/AlSb heterostructures grown on Si substrate

Jing Zhang(张静)1,2, Hong-Liang Lv(吕红亮)1, Hai-Qiao Ni(倪海桥)2, Shi-Zheng Yang(杨施政)1, Xiao-Ran Cui(崔晓然)1,2, Zhi-Chuan Niu(牛智川)2, Yi-Men Zhang(张义门)1, Yu-Ming Zhang(张玉明)1
1 School of Microelectronics, Xidian University and the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xi'an 710071, China;
2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The InAs/AlSb heterostructures with step-graded GaAsxSb1-x metamorphic buffer layers grown on Si substrates by molecular beam epitaxy are studied. The step-graded GaAsxSb1-x metamorphic buffer layers are used to relax the strain and block defects at each interface of the layers. Meanwhile, adding Sb to GaAs is also beneficial to suppressing the formation of dislocations in the subsequent materials. The influences of the growth temperature of the step-graded GaAsxSb1-x metamorphic buffer layer on the electron mobility and surface topography are investigated for a series of samples. Based on the atomic force microscopy (AFM), high resolution x-ray diffraction (HRXRD), reciprocal space map (RSM), and Hall measurements, the crystal quality and composition of GaAsxSb1-x layer are seen to strongly depend on growth temperature while keeping the Ga growth rate and V/III ratio constant. The results show that the highest electron mobility is 10270 cm2/V·s and the roughness is 4.3 nm for the step-graded GaAsxSb1-x metamorphic buffer layer grown at a temperature of 410℃.
Keywords:  Si      sticking coefficients      growth temperature      GaAsxSb1-x metamorphic buffer  
Received:  04 June 2019      Revised:  20 September 2019      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: Project supported by the National Defense Advanced Research Project, China (Grant No. 315 xxxxx301), the National Defense Innovation Program, China (Grant No. 48xx4), the National Key Technologies Research and Development Program, China (Grant No. 2018YFA0306101), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ20170032), and the National Natural Science Foundation of China (Grant No. 61505196).
Corresponding Authors:  Hong-Liang Lv, Hai-Qiao Ni     E-mail:  hllv@mail.xidian.edu.cn;nihq@semi.ac.cn

Cite this article: 

Jing Zhang(张静), Hong-Liang Lv(吕红亮), Hai-Qiao Ni(倪海桥), Shi-Zheng Yang(杨施政), Xiao-Ran Cui(崔晓然), Zhi-Chuan Niu(牛智川), Yi-Men Zhang(张义门), Yu-Ming Zhang(张玉明) Effect of growth temperature of GaAsxSb1-x metamorphic buffer layer on electron mobility of InAs/AlSb heterostructures grown on Si substrate 2019 Chin. Phys. B 28 118102

[1] Martin H, Mark V D, Blandine D, Richard O, Georgios V, Gerben D, Aryan A, Ta-Kun C, Chih-Hua H, Peter R, Tim V, Yee-Chia Y and Matthias P 2017 Sci. Rep. 7 14632
[2] Kumar A, Lee S Y, Yadav S, Tan K H, Loke W K, Dong Y, Lee K H, Satrio W, Liang G C, Yoon S F, Dimitri A, Yeo Y C and Gong X 2017 Opt. Express 25 031853
[3] Guan H, Wang S X, Chen L L, Gao B, Wang Y and Jiang C Y 2019 Coatings 9 318
[4] Desplanque L, El S, Codron J L, Wang Y, Ruterana P, Moschetti G, Grahn J and Wallart X 2012 Appl. Phys. Lett. 100 262103
[5] Giuseppe M, Eric L, Martin F, Per-åke N, Ludovic D, Xavier W and Jan G 2013 Solid-State Electron. 87 85
[6] Lin Y C, Yamaguchi H, Chang E Y, Hsieh Y C, Ueki M, Hirayama Y and Chang C Y 2007 Appl. Phys. Lett. 90 023509
[7] Desplanque L, S El Kazzi, Coinon C, Ziegler S, Kunert B, Beyer A, Volz K, Stolz W, Wang Y, Ruterana P and Wallart X 2012 Appl. Phys. Lett. 101 142111
[8] Wang Y F, Wang Q, Jia Z G, Li X Y, Deng C, Ren X M, Cai S W and Huang Y Q 2013 J. Vac. Sci. & Technol. B. 31 051211
[9] Akahane K, Yamamoto N, Gozu S I and Ohtani N 2004 J. Cryst. Growth. 264 21
[10] Chiu P C, Huang H W, Hsueh W J, Hsin Y M, Chen C Y and Chyi J I 2015 J. Cryst. Growth. 425 385
[11] Liu H Y, Qiu Y, Jin C Y, Walther T and Cullis A G 2008 Appl. Phys. Lett. 92 111906
[12] Choi C H, Ai R and Barnett S 1991 Phys. Rev. Lett. 67 2826
[13] Matsushima Y C and Gonda S I 1976 Jap. J. Appl. Phys. 15 11
[14] Nguyen and Chanh 1992 J. Vac. Sci. & Technol. B. 10 898
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[7] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[8] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[9] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[10] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[11] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[12] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[13] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[14] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[15] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
No Suggested Reading articles found!