Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 028101    DOI: 10.1088/1674-1056/28/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy

Jing Zhang(张静)1,2, Hongliang Lv(吕红亮)1, Haiqiao Ni(倪海桥)2, Shizheng Yang(杨施政)1, Xiaoran Cui(崔晓然)1,2, Zhichuan Niu(牛智川)2, Yimen Zhang(张义门)1, Yuming Zhang(张玉明)1
1 School of Microelectronics, Xidian University and the State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xi'an 710071, China;
2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The growth of the InAs film directly on the Si substrate deflected from the plane (100) at 4° towards (110) has been performed using a two-step procedure. The effect of the growth and annealing temperature on the electron mobility and surface topography has been investigated for a set of samples. The results show that the highest electron mobility is 4640 cm2/V·in the sample, in which the 10-nm InAs nucleation layer is grown at a low temperature of 320℃ followed by ramping up to 560℃, and the nucleation layer was annealed for 15 min and the second layer of InAs is grown at 520℃. The influence of different buffer layers on the electron mobility of the samples has also been investigated, which shows that the highest electron mobility of 9222 cm2/V·at 300 K is obtained in the sample grown on a thick and linearly graded InGaAlAs metamorphic buffer layer deposited at 420℃.
Keywords:  InAs      Si      high electron mobility      growth temperature      InGaAlAs metamorphic buffer  
Received:  06 November 2018      Revised:  07 December 2018      Accepted manuscript online: 
PACS:  81.05.Ea (III-V semiconductors)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.70.-q (Methods of materials testing and analysis)  
Fund: Project supported by the National Defense Advanced Research Project, China (Grant No. 315 xxxxx301), National Defense Innovation Program, China (Grant No. 48xx4), the National Key Technologies Research and Development Program of China (Grant No. 2018YFA03xxx01), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YJKYYQ2017xxx2), and the National Natural Science Foundation of China (Grant No. 6150xxx6).
Corresponding Authors:  Hongliang Lv, Haiqiao Ni     E-mail:  hllv@mail.xidian.edu.cn;nihq@semi.ac.cn

Cite this article: 

Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明) Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy 2019 Chin. Phys. B 28 028101

[1] Martin H, Mark V D, Blandine D, Richard O, Georgios V, Gerben D, Aryan A, Ta-Kun C, Chih-Hua H, Peter R, Tim V, Yee-Chia Y and Matthias P 2017 Sci. Rep. 7 14632
[2] Huang J, Li M, Zhao Q, Gu W W and Liu K M 2015 Chin. Phys. B 24 087305
[3] Wang J, Hu H Y, Deng C, He Y R, Wang Q, Duan X F, Huang Y Q and Ren X M 2015 Chin. Phys. B 24 028101
[4] Yan X, Zhang X, Li J S, Lv X L, Ren X M and Huang Y Q 2013 Chin. Phys. B 22 076102
[5] Ko K M, Seo J H, Kim D E, Lee S T, Noh Y K, Kim M D and Oh J E 2009 Nanotechnology 20 225201
[6] Smita J, Xueyan S, Babcock S E, Kuech T F, Dane W, Bin W, Fay P and Alan S 2008 J. Crystal Growth 310 4772
[7] Méndez-García V H, Saucedo-Zeni N, Balderas R and Lopez-Lopez M 2009 J. Crystal Growth 311 1451
[8] Reynald A, Mickael M, Jeremy M, Patrice G, Sylvain D, Tiphaine C, Franck B, Frederique D, Yann B and Thierry B 2018 Thin Solid Films 645 119
[9] Takaaki M, Kazutaka M, Neul H, Akihiro O, Andrea C, Stefano S, Takeshi N, Yoshiki S, Takashi K and Kazuaki S 2016 Crystal Growth 16 5412
[10] Sepideh G G, Martin B, Kimberly A D and Lars-Erik W 2011 J. Crystal Growth 332 12
[11] Caroff P, Jeppsson M, Wheeler D, Keplinger M, Mandl B, Stangl J, Seabaugh A, Bauer G and Wernersson L E 2008 J. Phys. Conf. Ser. 100 042017
[12] Keye S, Daehwan J, Chen S, Alan L, John B and Andreas B 2017 IEEE Photonics Conference
[13] Pei-Chin C, Wei-Jen H, Nien-Tze Y, Chao-Ching C, You-Ru L, Chih-Hsin K, Clement H W and Jen-Inn C 2013 J. Vac. Sci. Technol. B 31 061207
[14] Mingchu T, Siming C, Jiang W, Qi J, Vitaliy G D, Mourad B, Yuriy I M, Gregory J S, Alwyn S and Huiyun L 2014 Opt. Express. 22 10
[15] Xia L, Hong J, Guoqing M, Hang S, Lianzhen C, Zhiming L and Dabing L 2010 J. Alloys Compd. 506 530
[16] Hoke W E, Lemonias P J, Mosca J J, Lyman P S, Torabi A, Marsh P F, McTaggart R A, Lardizabal S M and Hetzler K 1999 J. Vac. Sci. Technol. B 17 1131
[17] Sun Y, Thompson S E and Nishida T 2007 J. Appl. Phys. 101 104503
[18] Enzo U, Siddhartha D, Gerhard K, Viktor S, Hans K and Siegfried S 2007 Trans. Electron. Dev. 54 9
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[7] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[8] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[9] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[10] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[11] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[12] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[13] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[14] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[15] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
No Suggested Reading articles found!