CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Synthesis and thermoelectric properties of Bi-doped SnSe thin films |
Jun Pang(庞军), Xi Zhang(张析)†, Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢)‡ |
College of Physics, Sichuan University, Chengdu 610064, China |
|
|
Abstract Bi doped n-type SnSe thin films were prepared by chemical vapor deposition (CVD) and their structure and thermoelectric properties were studied. The x-ray diffraction patterns, x-ray photoelectron spectroscopy, and microscopic images show that the prepared SnSe thin films were composed of pure SnSe crystals. The Seebeck coefficients of the Bi-doped SnSe were greatly improved compared to that of undoped SnSe thin films. Specifically, Sn0.99Bi0.01Se thin film exhibited a Seebeck coefficient of -905.8μV·K-1 at 600 K, much higher than 285.5 μV·K-1 of undoped SnSe thin film. Further first-principles calculations reveal that the enhancement of the thermoelectric properties can be explained mainly by the Fermi level lifting and the carrier pockets increasing near the Fermi level due to Bi doping in the SnSe samples. Our results suggest the potentials of the Bi-doped SnSe thin films in thermoelectric applications.
|
Received: 16 February 2021
Revised: 19 June 2021
Accepted manuscript online: 07 July 2021
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
68.35.bg
|
(Semiconductors)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405702) and the National Natural Science Foundation of China (Grant No. 51672179). |
Corresponding Authors:
Xi Zhang, Gang Xiang
E-mail: xizhang@scu.edu.cn;gxiang@scu.edu.cn
|
Cite this article:
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢) Synthesis and thermoelectric properties of Bi-doped SnSe thin films 2021 Chin. Phys. B 30 116302
|
[1] Bell L E 2008 Science 321 1457 [2] Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew. Chemie - Int. Ed. 48 8616 [3] Snyder G J and Toberer ES 2008 Nat. Mater. 7 105 [4] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634 [5] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 [6] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 [7] Liu Y, Lu J, Wang R, Wang C and Jiang J H 2020 Chin. Phys. B 29 040504 [8] Paul B and Banerji P 2009 Nanosci. Nanotechnol. Lett. 1 208 [9] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science. 321 1457 [10] Goldsmid H J 2012 J. Electron. Mater. 41 2126 [11] Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G and Ren Z 2012 Nano Lett. 12 2077 [12] Liu W, Hu J, Zhang S, Deng M, Han C G and Liu Y 2017 Mater. Today Phys. 1 50 [13] Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y and Pei Y 2015 J. Mater. 1 307 [14] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141 [15] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [16] Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 1 [17] Feng Y Y, Zhang X, Lei L, Nie Y and Xiang G 2020 RSC Adv. 10 11990 [18] Ge Z H, Qiu Y, Chen Y X, Chong X, Feng J, Liu Z K and He J 2019 Adv. Funct. Mater. 29 1 [19] Yan S S, Wang Y, Gao Z B, Long Y and Ren J 2021 Chin. Phys. Lett. 38 027301 [20] Zhou L Y, Zheng Q, Bao L H and Liang W J 2020 Chin. Phys. Lett. 37 017301 [21] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [22] Vaughn D D, In S Il and Schaak R E 2011 ACS Nano 5 8852 [23] Hao L, Wang Z, Xu H, Yan K, Dong S, Liu H, Du Y, Wu Y, Liu Y and Dong M 2019 2D Mater. 6 034004 [24] Xu H, Hao L, Liu H, Dong S, Wu Y, Liu Y, Cao B, Wang Z, Ling C, Li S, Xu Z, Xue Q and Yan K 2020 ACS Appl. Mater. Interfaces 12 35250 [25] Liu S, Sun N, Liu M, Sucharitakul S and Gao X P A 2018 J. Appl. Phys. 123 115109 [26] Liu S, Lan M, Li G, Yuan Y, Jia B and Wang Q 2020 Ceram. Int. 46 16578 [27] Jamali-Sheini F, Cheraghizade M and Yousefi R 2018 Appl. Surf. Sci. 443 345 [28] Li X F, Chen C, Xue W H, Li S, Cao F, Chen Y X, He J Q, Sui J H, Liu X J, Wang Y M and Zhang Q 2018 Inorg. Chem. 57 13800 [29] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [30] Kresse G and Hafner J J 1993 Phys. Rev. B 48 13115 [31] Blöchl P E 1994 Phys. Rev. B 50 17953 [32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [33] Montazeri A and Jamali-Sheini F 2017 Sensors Actuators, B Chem. 242 778 [34] Banik A and Biswas K 2017 Angew. Chemie 129 14753 [35] Saha S, Banik A and Biswas K 2016 Chem.: A Eur. J. 22 15634 [36] Fan H, Wang G and Hu L 2010 Solid State Sci. 11 2065 [37] Heo S H, Jo S, Kim H S, Choi G, Song J Y, Kang J Y, Park N J, Ban H W, Kim F, Jeong H, Jung J, Jang J, Lee W B, Shin H and Son J S 2019 Nat. Commun. 10 1 [38] Duvjir G, Min T, Thi Ly T, Kim T, Duong A T, Cho S, Rhim S H, Lee J and Kim J 2017 Appl. Phys. Lett. 110 262106 [39] Shi G and Kioupakis E 2015 J. Appl. Phys. 117 065103 [40] Guo D, Hu C, Xi Y and Zhang K 2013 J. Phys. Chem. C 117 21597 [41] Chen S, Cai K and Zhao W 2012 Physica B 407 4154 [42] Liu J, Wang P, Wang M, Xu R, Zhang J, Liu J, Li D, Liang N, Du Y, Chen G and Tang G 2018 Nano Energy 53 683 [43] Mooney P M, Watkins K P, Jiang Z, Basile A F, Lewis R B, Bahrami-Yekta V, Masnadi-Shirazi M, Beaton D A and Tiedje T 2013 J. Appl. Phys. 113 133708 [44] Cheng Y, Chang Y, Feng Y, Jian H, Tang Z and Zhang H 2018 Angew. Chemie Int. Ed. 57 246 [45] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy Environ. Sci. 9 3044 [46] Song L, Zhang J and Iversen B B 2019 J. Mater. Chem. A 7 17981 [47] Song L, Zhang J and Iversen B B 2020 ACS Appl. Energy Mater. 3 2055 [48] Zheng Z H, Fan P, Luo J T, Liang G X, Liu P J and Zhang D P 2016 J. Alloys Compd. 668 8 [49] Chandra S, Banik A and Biswas K 2018 ACS Energy Lett. 3 1153 [50] Nguyen V Q, Nguyen T H, Duong V T, Lee J E, Park S D, Song J Y, Park H M, Duong A T and Cho S 2018 Nanoscale Res. Lett. 13 4 [51] Chen C L, Wang H, Chen Y Y, Day T and Snyder G J 2014 J. Mater. Chem. A 2 11171 [52] Cutler M and Mott N F M 1969 Phys. Rev. 181 1336 [53] Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, Wang G and Zhou X 2016 Energy Environ. Sci. 9 454 [54] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251 [55] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|