Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116302    DOI: 10.1088/1674-1056/ac11da
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Synthesis and thermoelectric properties of Bi-doped SnSe thin films

Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢)
College of Physics, Sichuan University, Chengdu 610064, China
Abstract  Bi doped n-type SnSe thin films were prepared by chemical vapor deposition (CVD) and their structure and thermoelectric properties were studied. The x-ray diffraction patterns, x-ray photoelectron spectroscopy, and microscopic images show that the prepared SnSe thin films were composed of pure SnSe crystals. The Seebeck coefficients of the Bi-doped SnSe were greatly improved compared to that of undoped SnSe thin films. Specifically, Sn0.99Bi0.01Se thin film exhibited a Seebeck coefficient of -905.8μV·K-1 at 600 K, much higher than 285.5 μV·K-1 of undoped SnSe thin film. Further first-principles calculations reveal that the enhancement of the thermoelectric properties can be explained mainly by the Fermi level lifting and the carrier pockets increasing near the Fermi level due to Bi doping in the SnSe samples. Our results suggest the potentials of the Bi-doped SnSe thin films in thermoelectric applications.
Keywords:  SnSe thin films      Bi doping      thermoelectric properties      Seebeck coefficient  
Received:  16 February 2021      Revised:  19 June 2021      Accepted manuscript online:  07 July 2021
PACS:  63.20.dk (First-principles theory)  
  73.50.Lw (Thermoelectric effects)  
  68.35.bg (Semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405702) and the National Natural Science Foundation of China (Grant No. 51672179).
Corresponding Authors:  Xi Zhang, Gang Xiang     E-mail:  xizhang@scu.edu.cn;gxiang@scu.edu.cn

Cite this article: 

Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢) Synthesis and thermoelectric properties of Bi-doped SnSe thin films 2021 Chin. Phys. B 30 116302

[1] Bell L E 2008 Science 321 1457
[2] Sootsman J R, Chung D Y and Kanatzidis M G 2009 Angew. Chemie - Int. Ed. 48 8616
[3] Snyder G J and Toberer ES 2008 Nat. Mater. 7 105
[4] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G and Ren Z 2008 Science 320 634
[5] Dresselhaus M S, Chen G, Tang M Y, Yang R, Lee H, Wang D, Ren Z, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[6] Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414
[7] Liu Y, Lu J, Wang R, Wang C and Jiang J H 2020 Chin. Phys. B 29 040504
[8] Paul B and Banerji P 2009 Nanosci. Nanotechnol. Lett. 1 208
[9] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science. 321 1457
[10] Goldsmid H J 2012 J. Electron. Mater. 41 2126
[11] Yu B, Zebarjadi M, Wang H, Lukas K, Wang H, Wang D, Opeil C, Dresselhaus M, Chen G and Ren Z 2012 Nano Lett. 12 2077
[12] Liu W, Hu J, Zhang S, Deng M, Han C G and Liu Y 2017 Mater. Today Phys. 1 50
[13] Li W, Chen Z, Lin S, Chang Y, Ge B, Chen Y and Pei Y 2015 J. Mater. 1 307
[14] Zhao L D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C and Kanatzidis M G 2016 Science 351 141
[15] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373
[16] Duong A T, Nguyen V Q, Duvjir G, Duong V T, Kwon S, Song J Y, Lee J K, Lee J E, Park S, Min T, Lee J, Kim J and Cho S 2016 Nat. Commun. 7 1
[17] Feng Y Y, Zhang X, Lei L, Nie Y and Xiang G 2020 RSC Adv. 10 11990
[18] Ge Z H, Qiu Y, Chen Y X, Chong X, Feng J, Liu Z K and He J 2019 Adv. Funct. Mater. 29 1
[19] Yan S S, Wang Y, Gao Z B, Long Y and Ren J 2021 Chin. Phys. Lett. 38 027301
[20] Zhou L Y, Zheng Q, Bao L H and Liang W J 2020 Chin. Phys. Lett. 37 017301
[21] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[22] Vaughn D D, In S Il and Schaak R E 2011 ACS Nano 5 8852
[23] Hao L, Wang Z, Xu H, Yan K, Dong S, Liu H, Du Y, Wu Y, Liu Y and Dong M 2019 2D Mater. 6 034004
[24] Xu H, Hao L, Liu H, Dong S, Wu Y, Liu Y, Cao B, Wang Z, Ling C, Li S, Xu Z, Xue Q and Yan K 2020 ACS Appl. Mater. Interfaces 12 35250
[25] Liu S, Sun N, Liu M, Sucharitakul S and Gao X P A 2018 J. Appl. Phys. 123 115109
[26] Liu S, Lan M, Li G, Yuan Y, Jia B and Wang Q 2020 Ceram. Int. 46 16578
[27] Jamali-Sheini F, Cheraghizade M and Yousefi R 2018 Appl. Surf. Sci. 443 345
[28] Li X F, Chen C, Xue W H, Li S, Cao F, Chen Y X, He J Q, Sui J H, Liu X J, Wang Y M and Zhang Q 2018 Inorg. Chem. 57 13800
[29] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[30] Kresse G and Hafner J J 1993 Phys. Rev. B 48 13115
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Montazeri A and Jamali-Sheini F 2017 Sensors Actuators, B Chem. 242 778
[34] Banik A and Biswas K 2017 Angew. Chemie 129 14753
[35] Saha S, Banik A and Biswas K 2016 Chem.: A Eur. J. 22 15634
[36] Fan H, Wang G and Hu L 2010 Solid State Sci. 11 2065
[37] Heo S H, Jo S, Kim H S, Choi G, Song J Y, Kang J Y, Park N J, Ban H W, Kim F, Jeong H, Jung J, Jang J, Lee W B, Shin H and Son J S 2019 Nat. Commun. 10 1
[38] Duvjir G, Min T, Thi Ly T, Kim T, Duong A T, Cho S, Rhim S H, Lee J and Kim J 2017 Appl. Phys. Lett. 110 262106
[39] Shi G and Kioupakis E 2015 J. Appl. Phys. 117 065103
[40] Guo D, Hu C, Xi Y and Zhang K 2013 J. Phys. Chem. C 117 21597
[41] Chen S, Cai K and Zhao W 2012 Physica B 407 4154
[42] Liu J, Wang P, Wang M, Xu R, Zhang J, Liu J, Li D, Liang N, Du Y, Chen G and Tang G 2018 Nano Energy 53 683
[43] Mooney P M, Watkins K P, Jiang Z, Basile A F, Lewis R B, Bahrami-Yekta V, Masnadi-Shirazi M, Beaton D A and Tiedje T 2013 J. Appl. Phys. 113 133708
[44] Cheng Y, Chang Y, Feng Y, Jian H, Tang Z and Zhang H 2018 Angew. Chemie Int. Ed. 57 246
[45] Zhao L D, Chang C, Tan G and Kanatzidis M G 2016 Energy Environ. Sci. 9 3044
[46] Song L, Zhang J and Iversen B B 2019 J. Mater. Chem. A 7 17981
[47] Song L, Zhang J and Iversen B B 2020 ACS Appl. Energy Mater. 3 2055
[48] Zheng Z H, Fan P, Luo J T, Liang G X, Liu P J and Zhang D P 2016 J. Alloys Compd. 668 8
[49] Chandra S, Banik A and Biswas K 2018 ACS Energy Lett. 3 1153
[50] Nguyen V Q, Nguyen T H, Duong V T, Lee J E, Park S D, Song J Y, Park H M, Duong A T and Cho S 2018 Nanoscale Res. Lett. 13 4
[51] Chen C L, Wang H, Chen Y Y, Day T and Snyder G J 2014 J. Mater. Chem. A 2 11171
[52] Cutler M and Mott N F M 1969 Phys. Rev. 181 1336
[53] Peng K, Lu X, Zhan H, Hui S, Tang X, Wang G, Dai J, Uher C, Wang G and Zhou X 2016 Energy Environ. Sci. 9 454
[54] Zhao L D, Dravid V P and Kanatzidis M G 2014 Energy Environ. Sci. 7 251
[55] Pei Y, Shi X, Lalonde A, Wang H, Chen L and Snyder G J 2011 Nature 473 66
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[5] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[6] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[7] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[8] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[9] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[10] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[11] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[12] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[13] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[14] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[15] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
No Suggested Reading articles found!