Special Issue:
SPECIAL TOPIC — Organic and hybrid thermoelectrics
|
SPECIAL TOPIC—Organic and hybrid thermoelectrics |
Prev
Next
|
|
|
Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications |
Fu-Wei Liu(刘福伟)1,†, Fei Zhong(钟飞)2,†, Shi-Chao Wang(王世超)2, Wen-He Xie(谢文合)1, Xue Chen(陈雪)1, Ya-Ge Hu(胡亚歌)1, Yu-Ying Ge(葛钰莹)1, Yuan Gao(郜源)1, Lei Wang(王雷)2,‡, and Zi-Qi Liang(梁子骐)3,§ |
1 College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; 2 Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; 3 Department of Materials Science, Fudan University, Shanghai 200433, China |
|
|
Abstract High-performance organic composite thermoelectric (TE) materials are considered as a promising alternative for harvesting heat energy. Herein, composite films of poly (3,4-ethyienedioxythiophene):poly(styrene sulfonate)/single-walled carbon nanotubes (PEDOT:PSS/SWCNTs) were fabricated by utilizing a convenient solution mixing method. Thereafter, the as-prepared hybrid films were treated using sulfuric acid (H2SO4) to further optimize the TE performance. Film morphological studies revealed that the sulfuric acid treated PEDOT:PSS/SWCNTs composite samples all possessed porous structures. Due to the successful fabrication of highly conductive networks, the porous nano-architecture also exhibited much more excellent TE properties when compared with the dense structure of the pristine samples. For the post-treated sample, a high power factor of 156.43 μW· m-1· K-2 can be achieved by adjusting the content of CNTs, which is approximately 3 orders of magnitude higher than that of the corresponding untreated samples (0.23 μW· m-1· K-2). Besides, the obtained films also showed excellent mechanical flexibility, owing to the porous nanostructure and the strong π-π interactions between the two components. This work indicates that the H2SO4 treatment could be a promising strategy for fabricating highly-flexible and porous PEDOT:PSS/SWCNTs films with high TE performances.
|
Received: 31 August 2021
Revised: 14 October 2021
Accepted manuscript online: 01 November 2021
|
PACS:
|
73.50.Lw
|
(Thermoelectric effects)
|
|
88.30.rh
|
(Carbon nanotubes)
|
|
78.67.Rb
|
(Nanoporous materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2004174, 51773118, and 51673044). |
Corresponding Authors:
Lei Wang, Zi-Qi Liang
E-mail: wl@szu.edu.cn;zqliang@fudan.edu.cn
|
Cite this article:
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐) Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications 2022 Chin. Phys. B 31 027303
|
[1] Zhang Q, Sun Y, Xu W and Zhu D 2014 Adv. Mater. 26 6829 [2] Tang J, Chen R, Chen L, Bazan G C and Liang Z 2020 J. Mater. Chem. A 8 9797 [3] Zhang Y, Chen S, Zhang H, Ding X, Fu P and Du F 2021 Compos. Commun. 27 100883 [4] Li C, He W, Wang D and Zhao L D 2021 Chin. Phys. B 30 067101 [5] Xia X G, Zhang Q, Zhou W B, Xiao Z J, Xi W, Wang Y C and Zhou W Y 2021 Chin. Phys. B 30 078801 [6] Gao C and Chen G 2016 Compos. Sci. Technol. 124 52 [7] Wang L, Pan C, Chen Z, Zhou W, Gao C and Wang L 2018 ACS Appl. Energ. Mater. 1 5075 [8] Tang J, Chen Y, McCuskey S R, Chen L, Bazan G C and Liang Z 2019 Adv. Electron. Mater. 5 1800943 [9] Li Y, Du Y, Dou Y, Cai K and Xu J 2017 Synthetic Met. 226 119 [10] Wang L, Yao Q, Xiao J, Zeng K, Qu S, Shi W, Wang Q and Chen L 2016 Chem. Asian. J 11 1804 [11] Wang H, Yi S i and Yu C 2016 Polymer 97 487 [12] Zhou X, Pan C, Liang A, Wang L and Wong W Y 2017 Compos. Sci. Technol. 145 40 [13] Kishi N, Kondo Y, Kunieda H, Hibi S and Sawada Y 2017 J. Mater. Sci. Mater. Electron. 29 4030 [14] Zhu Z, Liu C, Jiang F, Xu J and Liu E 2017 Synthetic Met. 225 31 [15] Ouyang J, Xu Q, Chu C W, Yang Y, Li G and Shinar J 2004 Polymer 45 8443 [16] Ouyang J, Chu C W, Chen F C, Xu Q and Yang Y 2005 Adv. Funct. Mater. 15 203 [17] Badre C, Marquant L, Alsayed A M and Hough L A 2012 Adv. Funct. Mater. 22 2723 [18] Liu C, Xu J, Lu B, Yue R and Kong F 2012 J. Electron. Mater. 41 639 [19] Xia Y and Ouyang J 2009 Macromolecules 42 4141 [20] Fan Z, Du D, Yu Z, Li P, Xia Y and Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204 [21] Lee S H, Park H, Kim S, Son W, Cheong I W and Kim J H 2014 J. Mater. Chem. A 2 7288 [22] Kim G H, Shao L, Zhang K and Pipe K P 2013 Nat. Mater. 12 719 [23] Crispin X, Jakobsson F L E, Crispin A, Grim P C M, Andersson P, Volodin A, Van Haesendonck C, Van der Auweraer M, Salaneck W R and Berggren M 2006 Chem. Mater. 18 4354 [24] Takano T, Masunaga H, Fujiwara A, Okuzaki H and Sasaki T 2012 Macromolecules 45 3859 [25] Bießmann L, Saxena N, Hohn N, Hossain M A, Veinot J G C and Müller-Buschbaum P 2019 Adv. Electron. Mater. 5 1800654 [26] Bae E J, Kang Y H, Jang K S and Cho S Y 2016 Sci. Rep. 6 18805 [27] Liu X, Du Y, Meng Q, Dou Y, Jin M, Xu J and Shen S Z 2020 Adv. Eng. Mater. 22 2000605 [28] Zhang Y, Liu S, Koh J J and He C 2021 J. Materiomics 7 34 [29] Zhang Y, Zhang Q and Chen G 2020 Carbon Energy 2 408 [30] Kim D, Kim Y, Choi K, Grunlan J C and Yu C 2010 ACS Nano 4 513 [31] Song H, Liu C, Xu J, Jiang Q and Shi H 2013 RSC Adv. 3 22065 [32] Zhang Z, Chen G, Wang H and Li X 2015 Chem. Asian. J. 10 149 [33] Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J and Jiang F 2018 Mater. Chem. Front. 2 679 [34] Zhang L, Harima Y and Imae I 2017 Org. Electron. 51 304 [35] Lee W, Kang Y H, Lee J Y, Jang K S and Cho S Y 2016 RSC Adv. 6 53339 [36] Du Y, Shi Y, Meng Q and Shen S Z 2020 Synthetic Met. 261 116318 [37] Wei S, Huang X, Deng L, Yan Z C and Chen G 2021 Compos. Sci. Technol. 208 108759 [38] Jia F, Wu R, Liu C, Lan J, Lin Y H and Yang X 2019 ACS Sustainable Chem. Eng. 7 12591 [39] Sun X, Wei Y, Li J, Zhao J, Zhao L and Li Q 2017 Sci. China Mater. 60 159 [40] Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J and Lee K 2014 Adv. Mater. 26 2268 [41] Farah A A, Rutledge S A, Schaarschmidt A, Lai R, Freedman J P and Helmy A S 2012 J. Appl. Phys. 112 113709 [42] Fan W, Guo C Y and Chen G 2018 J. Mater. Chem. A 6 12275 [43] Yoo D, Kim J, Lee S H, Cho W, Choi H H, Kim F S and Kim J H 2015 J. Mater. Chem. A 3 6526 [44] Łapkowski and Proń A 2000 Synthetic Met. 110 79 [45] Garreau S, Louarn G, Buisson J P, Froyer G and Lefrant S 1999 Macromolecules 32 6807 [46] Ely F, Matsumoto A, Zoetebier B, Peressinotto V S, Hirata M K, de Sousa D A and Maciel R 2014 Org. Electron. 15 1062 [47] Mahakul P C, Sa K, Das B, Subramaniam B V R S, Saha S, Moharana B, Raiguru J, Dash S, Mukherjee J and Mahanandia P 2017 J. Mater. Sci. 52 5696 [48] Kang K S, Lim H K, Cho K Y, Han K J and Kim J 2008 J. Phys. D:Appl. Phys. 41 012003 [49] Kim N, Lee B H, Choi D, Kim G, Kim H, Kim J R, Lee J, Kahng Y H and Lee K 2012 Phys. Rev. Lett. 109 106405 [50] Wang J, Cai K and Shen S 2014 Org. Electron. 15 3087 [51] Suchand Sangeeth C S, Jaiswal M and Menon R 2009 J. Phys. Condens. Matter 21 072101 [52] Bubnova O and Crispin X 2012 Energ. Environ. Sci. 5 9345 [53] Yang J, Yip H L and Jen A K Y 2013 Adv. Energ. Mater. 3 549 [54] See K C, Feser J P, Chen C E, Majumdar A, Urban J J and Segalman R A 2010 Nano Lett. 10 4664 [55] Song H, Qiu Y, Wang Y, Cai K, Li D, Deng Y and He J 2017 Compos. Sci. Technol. 153 71 [56] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502 [57] Meng C, Liu C and Fan S 2010 Adv. Mater. 22 535 [58] Moriarty G P, Wheeler J N, Yu C and Grunlan J C 2012 Carbon 50 885 [59] Wang J, Cai K, Yin J and Shen S 2017 Synthetic Met. 224 27 [60] Yu C, Choi K, Yin L and Grunlan J C 2011 ACS Nano 5 7885 [61] Kim D, Kim Y, Choi K, Grunlan J C and Yu C 2010 ACS Nano 4 513 [62] Moriarty G P, De S, King P J, Khan U, Via M, King J A, Coleman J N and Grunlan J C 2013 J. Polym. Sci. Pol. Phys. 51 119 [63] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J and Li L F 2008 Chin. Phys. Lett. 25 2202 [64] Bounioux C, Díaz-Chao P, Campoy-Quiles M, Martín-González M S, Goñi A R, Yerushalmi-Rozen R and Müller C 2013 Energy Environ. Sci. 6 918 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|