Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌)1, Hong Wu(吴宏)2, Kunling Peng(彭坤岭)2, Xingchen Shen(沈星辰)2, Xiangnan Gong(公祥南)1, Sikang Zheng(郑思康)2, Xu Lu(卢旭)2, Guoyu Wang(王国玉)4, and Xiaoyuan Zhou(周小元)1,2,†
1 Analytical and Testing Center of Chongqing University, Chongqing 401331, China; 2 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China; 3 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; 4 University of Chinese Academy of Sciences, Beijing 100044, China
Abstract Indium selenide, a Ⅲ-V group semiconductor with layered structure, attracts intense attention in various photoelectric applications, due to its outstanding properties. Here, we report super deformability and thermoelectricity of γ-InSe single crystals grown by modified Bridgeman method. The crystal structure of InSe is studied systematically by transmission electron microscopy methods combined with x-ray diffraction and Raman spectroscopy. The predominate phase of γ-InSe with dense stacking faults and local multiphases is directly demonstrated at atomic scale. The bulk γ-InSe crystals demonstrate surprisingly high intrinsic super deformative ability which is highly pliable with bending strains exceeding 12.5% and 264% extension by rolling. At the meantime, InSe also possesses graphite-like features which is printable, writable, and erasable. Finally, the thermoelectric properties of γ-InSe bulk single crystals are preliminary studied and thermal conductivity can be further reduced via bending-induced defects. These findings will enrich the knowledge of structural and mechanical properties' flexibility of InSe and shed lights on the intrinsic and unique mechanical properties of InSe polytypes.
(Thermoelectric, electrogasdynamic and other direct energy conversion)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674040, 11604032, 51472036, 51672270, and 11904039), the Fundamental Research Funds for the Central Universities, China (Grant No. 106112016CDJZR308808), and Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH016).
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元) Super deformability and thermoelectricity of bulk γ-InSe single crystals 2021 Chin. Phys. B 30 078101
[1] Wei T R, Jin M, Wang Y C, Chen H Y, Gao Z Q, Zhao K P, Qiu P F, Shan Z W, Jiang J, Li R B, Chen L D, He J and Shi X 2020 Science369 542 [2] Han X D 2020 Science369 509 [3] Feng W, Zheng W, Chen X S, Liu G B and Hu P A 2015 ACS Appl. Mater. Interfaces7 26691 [4] Shubina T V, Desrat W, Moret M, Tiberj A, Briot O, Davydov V Y, Platonov A V, Semina M A and Gil B 2019 Nat. Commun.10 3479 [5] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett.111 092107 [6] Chen L, Yu Z G, Liang D, Li S F, Tan W C, Zhang Y W and Ang K W 2020 Nano Energy76 105020 [7] Panella V, Carlotti G, Socino G, Giovannini L, Eddrief M, Amimer K and Sebenne C 1997 J. Phys.:Condens. Matter9 5575 [8] Li Y H, Yu C B, Gan Y Y, Kong Y Y, Jiang P, Zou D Feng, Li P H, Yu X F, Wu R, Zhao H J, Gao C F and Li J Y 2019 Nanotechnology30 335703 [9] Sun C, Xiang H, Xu B, Xia Y D, Yin J and Liu Z G 2016 Appl. Phys. Express9 035203 [10] Li W B and Li J 2015 Nano Res.8 3796 [11] Demirci S, Avazli N, Durgun E and Cahangirov S 2017 Phys. Rev. B95 115409 [12] Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H and Eddrief M 2002 J. Appl. Phys.91 140 [13] Popovic S, Tonejc A, Grzeta-Plenkovic B, Celustka B and Trojko R 1979 J. Appl. Cryst.12 416 [14] Han G, Chen Z G, Drennan J and Zou J 2014 Small10 2747 [15] Čelustka B and Popovi S 1974 J. Phys. Chem. Solids35 287 [16] Inoue S, Yoshida T and Morita T 1982 Jpn. J. Appl. Phys.21 242 [17] Sun M J, Wang W, Zhao Q H, Gan X T, Sun Y H, Jie W Q and Wang T 2020 Cryst. Eng. Comm.22 7864 [18] Hao Q Y, Yi H, Su H M, Wei B, Wang Z, Lao Z Z, Chai Y, Wang Z C, Jin C H, Dai J F and Zhang W J 2019 Nano Lett.19 2634 [19] Chen Z S, Biscaras J and Shukla A 2015 Nanoscale7 5981 [20] Grimaldi I, Gerace T, Pipta M M, Perrotta I D, Ciuchi F, Berger H, Papagno M, Castriota M and Pacilé D 2020 Solid State Commun.311 113855 [21] Yang Z B, Jie W J, Mak C H, Lin S H, Lin H H, Yang X F, Yan F, Lau S P and Hao J H 2017 ACS Nano11 4225 [22] Lokforman P A, Carré D, Etienne J and Bachet B 1975 Acta Cryst. B31 1252 [23] Wang J J, Cao F F, Jiang L, Guo Y G, Hu W P and Wan L J 2009 J. Am. Chem. Soc.131 15602 [24] Ikari T, Shigetomi S and Hashimoto K 1982 Phys. Stat. Sol. b111 477 [25] Carlone C and Jandl S 1979 Solid State Commun.29 31 [26] Wu L M, Shi J N, Zhou Z, Yan J H, Wang A W, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Yuan Huang, Zhou W, Bao L H, Ouyang M, Pantelides S T and Gao H J 2020 Nano Res.13 1127 [27] Rigoult J, Rimsky A and Kuhn A 1980 Acta Cryst. B36 916 [28] Blasi C D, Micocci G, Mongelli S and Tepore A 1982 J. Cryst. Grow.57 482 [29] Sun Y H, Li Y W, Li T S, Biswas K, Patané A and Zhang L J 2020 Adv. Funct. Mater.30 2001920 [30] Park K H, Jang K, Kim S, Kim H J and Son S U 2006 J. Am. Chem. Soc.128 14780 [31] Ning J J, Xiao G J, Xiao N R, Wang L, Liu B B and Zou B 2011 J. Crys. Grow.336 1 [32] Errandonea D, Martínez-García D, Segura A, Chevy A, Tobias G, Canadell E and Ordejon P 2006 Phys. Rev. B73 235202 [33] Rhyee J S, Lee K H, Lee S M, Cho E, Kim S I, Lee E, Kwon Y S, Shim J H and Kotliar G 2009 Nature459 965 [34] Cui J, Wang L, Du Z, Ying P and Deng Y 2015 J. Mater. Chem. C3 9069 [35] Hou X, Chen S, Du Z, Liu X and Cui J 2015 RSC Adv.5 102856 [36] Yim J H, Park H H, Jang H W, Yoo M J, Paik D S, Baek S H and Kim J S 2012 J. Electron. Mater.41 1354 [37] Zhao L D, Lo S H, Zhang Y S, Sun H, Tan G J, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature508 373 [38] Wu H, Lu X, Wang G Y, Peng K L, Chi H, Zhang B, Chen Y J, Li C J, Yan Y C, Guo L J, Uher C, Zhou X Y and Han X D 2018 Adv. Energy Mater.8 1800087 [39] Peng K L, Zhang B, Wu H, Cao X L, Li A, Yang D F, Lu X, Wang G Y, Han X D, Uher C and Zhou X Y 2018 Mater. Today21 501 [40] Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q and Zhao L D 2018 Science360 778 [41] He D S, Li Z Y and Yuan J 2015 Micron74 47 [42] Blasi C D, Micocci G, Mongelli S, Tepore A and Zuanni F 1983 Mater. Chem. Phys.9 55 [43] Chevy A, Kuhn A and Martin M S 1977 J. Crys. Grow.38 118 [44] Wu M, Xie Q Y, Wu Y Z, Zheng J J, Wang W, He L, Wu W S and Lv B 2019 AIP Adv.9 025013 [45] Mosca D H, Mattoso N, Lepienski C M, Veiga W, Mazzaro I, Etgens V H and Eddrief M 2002 J. Appl. Phys.91 140 [46] Isik M and Gasanly N M 2020 Mat. Sci. Semicon. Proc.107 104862 [47] Julien C, Hatzikraniotis E, Chevy A and Kambas K 1985 Mat. Res. Bull.20 287 [48] Hu Y X, Feng W, Dai M J, Yang H H, Chen X S, Liu G B, Zhang S C and Hu P A 2018 Semicond. Sci. Technol.33 125002 [49] Li H, Han X, Pan D, Yan X, Wang H W, Wu C M, Cheng G H, Zhang H C, Yang S, Li B K, He H T and Wang J N 2018 Cryst. Growth Des.18 2899
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.