CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis |
Zhe Wang(王喆)1,2,3 and Wenguang Zhu(朱文光)1,2,3,† |
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Monolayer transition metal dichalcogenides can normally exist in several structural polymorphs with distinct electrical, optical, and catalytic properties. Effective control of the relative stability and transformation of different phases in these materials is thus of critical importance for applications. Using density functional theory calculations, we investigate the effects of low-work-function metal substrates including Ti, Zr, and Hf on the structural, electronic, and catalytic properties of monolayer MoS2 and WS2. The results indicate that such substrates not only convert the energetically stable structure from the 1H phase to the 1T'/1T phase, but also significantly reduce the kinetic barriers of the phase transformation. Furthermore, our calculations also indicate that the 1T' phase of MoS2 with Zr or Hf substrate is a potential catalyst for the hydrogen evolution reaction.
|
Received: 13 February 2021
Revised: 12 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
64.70.Nd
|
(Structural transitions in nanoscale materials)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
81.16.Hc
|
(Catalytic methods)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000013). |
Corresponding Authors:
Wenguang Zhu
E-mail: wgzhu@ustc.edu.cn
|
Cite this article:
Zhe Wang(王喆) and Wenguang Zhu(朱文光) Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis 2021 Chin. Phys. B 30 116401
|
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [2] Mak K F and Shan J 2016 Nat. Photon. 10 216 [3] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [4] Chhowalla M, Shin H S, Eda G, Li L-J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 [5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [6] Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M and Seifert G 2011 J. Phys. Chem. C 115 24586 [7] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100 [8] Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308 [9] Yu Y, Nam G H, He Q, et al. 2018 Nat. Chem. 10 638 [10] Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J and Chen T 2016 Nat. Commun. 7 10672 [11] Chang K, Hai X, Pang H, Zhang H, Shi L, Liu G, Liu H, Zhao G, Li M and Ye J 2016 Adv. Mater. 28 10033 [12] Chou S S, Sai N, Lu P, Coker E N, Liu S, Artyushkova K, Luk T S, Kaehr B and Brinker C J 2015 Nat. Commun. 6 8311 [13] Fan X L, Yang Y, Xiao P and Lau W M 2014 J. Mater. Chem. A 2 20545 [14] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nano Lett. 13 6222 [15] Huang H H, Fan X, Singh D J and Zheng W T 2020 Nanoscale 12 1247 [16] Xiao Y, Zhou M, Liu J, Xu J and Fu L 2019 Sci. China Mater. 62 759 [17] Wang R, Yu Y, Zhou S, Li H, Wong H, Luo Z, Gan L and Zhai T 2018 Adv. Funct. Mater. 28 1802473 [18] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702 [19] Lin Y C, Dumcenco D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391 [20] Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, Xing L, Gu L, Jiang X, Xie L and Jiao L 2018 Nat. Mater. 17 1108 [21] Gao P, Wang L, Zhang Y, Huang Y and Liu K 2015 ACS Nano 9 11296 [22] Wang L, Xu Z, Wang W and Bai X 2014 J. Am. Chem. Soc. 136 6693 [23] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L and Jin S 2013 J. Am. Chem. Soc. 135 10274 [24] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214 [25] Yin X, Tang C S, Wu D, Kong W, Li C, Wang Q, Cao L, Yang M, Chang Y H, Qi D, Ouyang F, Pennycook S J, Feng Y P, Breese M B H, Wang S J, Zhang W, Rusydi A and Wee A T S 2019 Adv. Sci. 6 1802093 [26] Ouyang B, Xiong S and Jing Y 2018 npj 2D Mater. Appl. 2 13 [27] Ling F, Jing H, Chen Y, Kang W, Zeng W, Liu X, Zhang Y, Fang L and Zhou M 2018 J. Mater. Chem. C 6 12245 [28] Ji X, Wu C, Deng J, Li J and Jin C 2020 Appl. Phys. Lett. 116 033103 [29] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111 [30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [31] Blöchl P E 1994 Phys. Rev. B 50 17953 [32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [34] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [35] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [36] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [37] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [38] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 J. Electrochem. Soc. 152 J23 [39] Guo Y, Sun D, Ouyang B, Raja A, Song J, Heinz T F and Brus L E 2015 Nano Lett. 15 5081 [40] Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P and Jaramillo T F 2014 ACS Catal. 4 3957 [41] Michalsky R, Zhang Y J and Peterson A A 2014 ACS Catal. 4 1274 [42] Liu Y, Wu J, Hackenberg K P, Zhang J, Wang Y M, Yang Y, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood B C and Yakobson B I 2017 Nat. Energy 2 17127 [43] Wang J, Liu J, Zhang B, Ji X, Xu K, Chen C, Miao L and Jiang J 2017 Phys. Chem. Chem. Phys. 19 10125 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|