Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116401    DOI: 10.1088/1674-1056/abfbd1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis

Zhe Wang(王喆)1,2,3 and Wenguang Zhu(朱文光)1,2,3,†
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
Abstract  Monolayer transition metal dichalcogenides can normally exist in several structural polymorphs with distinct electrical, optical, and catalytic properties. Effective control of the relative stability and transformation of different phases in these materials is thus of critical importance for applications. Using density functional theory calculations, we investigate the effects of low-work-function metal substrates including Ti, Zr, and Hf on the structural, electronic, and catalytic properties of monolayer MoS2 and WS2. The results indicate that such substrates not only convert the energetically stable structure from the 1H phase to the 1T'/1T phase, but also significantly reduce the kinetic barriers of the phase transformation. Furthermore, our calculations also indicate that the 1T' phase of MoS2 with Zr or Hf substrate is a potential catalyst for the hydrogen evolution reaction.
Keywords:  transition metal dichalcogenides      phase transformation      hydrogen evolution reaction      density functional theory  
Received:  13 February 2021      Revised:  12 April 2021      Accepted manuscript online:  27 April 2021
PACS:  64.70.Nd (Structural transitions in nanoscale materials)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  81.16.Hc (Catalytic methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000013).
Corresponding Authors:  Wenguang Zhu     E-mail:  wgzhu@ustc.edu.cn

Cite this article: 

Zhe Wang(王喆) and Wenguang Zhu(朱文光) Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis 2021 Chin. Phys. B 30 116401

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Mak K F and Shan J 2016 Nat. Photon. 10 216
[3] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[4] Chhowalla M, Shin H S, Eda G, Li L-J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M and Seifert G 2011 J. Phys. Chem. C 115 24586
[7] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100
[8] Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308
[9] Yu Y, Nam G H, He Q, et al. 2018 Nat. Chem. 10 638
[10] Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J and Chen T 2016 Nat. Commun. 7 10672
[11] Chang K, Hai X, Pang H, Zhang H, Shi L, Liu G, Liu H, Zhao G, Li M and Ye J 2016 Adv. Mater. 28 10033
[12] Chou S S, Sai N, Lu P, Coker E N, Liu S, Artyushkova K, Luk T S, Kaehr B and Brinker C J 2015 Nat. Commun. 6 8311
[13] Fan X L, Yang Y, Xiao P and Lau W M 2014 J. Mater. Chem. A 2 20545
[14] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G and Chhowalla M 2013 Nano Lett. 13 6222
[15] Huang H H, Fan X, Singh D J and Zheng W T 2020 Nanoscale 12 1247
[16] Xiao Y, Zhou M, Liu J, Xu J and Fu L 2019 Sci. China Mater. 62 759
[17] Wang R, Yu Y, Zhou S, Li H, Wong H, Luo Z, Gan L and Zhai T 2018 Adv. Funct. Mater. 28 1802473
[18] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[19] Lin Y C, Dumcenco D O, Huang Y S and Suenaga K 2014 Nat. Nanotechnol. 9 391
[20] Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, Xing L, Gu L, Jiang X, Xie L and Jiao L 2018 Nat. Mater. 17 1108
[21] Gao P, Wang L, Zhang Y, Huang Y and Liu K 2015 ACS Nano 9 11296
[22] Wang L, Xu Z, Wang W and Bai X 2014 J. Am. Chem. Soc. 136 6693
[23] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L and Jin S 2013 J. Am. Chem. Soc. 135 10274
[24] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214
[25] Yin X, Tang C S, Wu D, Kong W, Li C, Wang Q, Cao L, Yang M, Chang Y H, Qi D, Ouyang F, Pennycook S J, Feng Y P, Breese M B H, Wang S J, Zhang W, Rusydi A and Wee A T S 2019 Adv. Sci. 6 1802093
[26] Ouyang B, Xiong S and Jing Y 2018 npj 2D Mater. Appl. 2 13
[27] Ling F, Jing H, Chen Y, Kang W, Zeng W, Liu X, Zhang Y, Fang L and Zhou M 2018 J. Mater. Chem. C 6 12245
[28] Ji X, Wu C, Deng J, Li J and Jin C 2020 Appl. Phys. Lett. 116 033103
[29] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[35] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[36] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[37] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[38] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 J. Electrochem. Soc. 152 J23
[39] Guo Y, Sun D, Ouyang B, Raja A, Song J, Heinz T F and Brus L E 2015 Nano Lett. 15 5081
[40] Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P and Jaramillo T F 2014 ACS Catal. 4 3957
[41] Michalsky R, Zhang Y J and Peterson A A 2014 ACS Catal. 4 1274
[42] Liu Y, Wu J, Hackenberg K P, Zhang J, Wang Y M, Yang Y, Keyshar K, Gu J, Ogitsu T, Vajtai R, Lou J, Ajayan P M, Wood B C and Yakobson B I 2017 Nat. Energy 2 17127
[43] Wang J, Liu J, Zhang B, Ji X, Xu K, Chen C, Miao L and Jiang J 2017 Phys. Chem. Chem. Phys. 19 10125
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[11] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[14] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[15] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
No Suggested Reading articles found!