Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles |
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全)†, and Toshihisa Tomie(富江敏尚)‡ |
School of Science, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract A theory of multiphoton photoemission is derived to explain the experimentally observed monotonic decrease with the wavelength in the electron yield of TiO2 nanoparticles (NPs) by as large as four orders of magnitude. It is found that the fitting parameter corresponds to the energy position of Ti3d eg and t2g states, and the derived theory is a novel diagnostic of excited states in the conduction band, very importantly, applicable to individual NPs. The difference between four-photon slope NPs and three-photon slope NPs is attributed to the difference in defect density. The success of the theory in solving the puzzling result shows that thermal emission from high-lying levels may dominate over direct multiphoton ionization in solids when the photon number larger than four is required.
|
Received: 20 June 2021
Revised: 25 July 2021
Accepted manuscript online: 07 August 2021
|
PACS:
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
|
42.79.Ek
|
(Solar collectors and concentrators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850109, 11474040, 61605017, and 61775021) and the “111” Project of China (Grant No. D17017). |
Corresponding Authors:
Jingquan Lin, Toshihisa Tomie
E-mail: linjinquan@cust.edu.cn;tomie@cust.edu.cn
|
Cite this article:
Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚) Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles 2021 Chin. Phys. B 30 114214
|
[1] Schwank J 1983 Gold Bull. 18 103 [2] Haruta M, Kobayashi T, Sano H and Yamada N 1987 Chem. Lett. 16 405 [3] Janssens T V W, Clausen B S, Hvolbæk B, Falsig H, Christensen C H, Bligaard T and Norskov J K 2007 Topics in Catalysis 44 15 [4] Overbury S H, Schwartz V, Mullins D R, Yan W and Dai S 2006 J. Catalysis 241 56 [5] Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J and Chen M 2012 Nat. Mater. 11 775 [6] Linic S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911 [7] Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P and Halas N J 2013 Nano Lett. 13 240 [8] Clavero C 2014 Nat. Photon. 8 95 [9] Chalabi H, Schoen D and Brongersma M L 2014 Nano Lett. 14 1374 [10] Kumar D, Lee A, Lee T, Lim M and Lim D K 2016 Nano Lett. 16 1760 [11] Tan S, Argondizzo A, Ren J, Liu L, Zhao J and Petek H 2017 Nat. Photon. 11 806 [12] Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2018 Science 360 521 [13] Zhang Y, He S, Guo W, Hu Y, Huang Ji, Mulcahy J R and Wei W D 2018 Chem. Rev. 118 2927 [14] Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X and Fang Z 2019 Nano Lett. 19 775 [15] Li B, Li H, Yang C, Ji B, Lin J and Tomie T 2019 AIP Adv. 9 085321 [16] Li B, Li H, Yang C, Ji B, Lin J and Tomie T 2020 Catalysts 10 916 [17] Cronemeyer D C 1952 Phys. Rev. 87 876 [18] Breckenridge R G and Hosler W R 1953 Phys. Rev. 91 793 [19] Ghosh A M, Wakim F G and Addiss R R Jr. 1969 Phys. Rev. 184 979 [20] Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z, Hansen J O, Matthiesen J, Blekinge-Rasmussen A, Lægsgaard E, Hammer B and Besenbacher F 2008 Science 320 1755 [21] Henderson M A 2011 Surf. Sci. Rep. 66 185 [22] Zhang Z and Yates Jr J T 2012 Chem. Rev. 112 5520 [23] Fujishima A and Honda K 1972 Nature 238 37 [24] O'Regan B and Grätzel M 1991 Nature 353 737 [25] Fujishima A, Zhang X and Tryk D K 2008 Surf. Sci. Rep. 63 515 [26] Furube A and Hashimoto S 2017 NPG Asia Mater. 9 e454 [27] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050 [28] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643 [29] Seo J, Noh J H and Seok I 2016 Acc. Chem. Res. 49 562 [30] Giordano F, Abate A, Correa Baena J P, Saliba M, Matsui T, Im S H, Zakeeruddin S M, Nazeeruddin M K, Hagfeldt A and Graetzel M 2016 Nat. Commun. 7 1 [31] Ruankham P and Sagawa T 2018 J. Mater. Sci.: Mater. Electron. 29 9058 [32] Kaewprajak A, Kumnorkaew P and Sagawa T 2019 J. Mater. Sci.: Mater. Electron. 30 4041 [33] Beane G, Devkota T, Brown B S and Hartland G V 2019 Rep. Prog. Phys. 82 016401 [34] Dąbrowski M, Dai Y and Petek H 2020 Chem. Rev. 120 6247 [35] Bauer E 2012 J. Electron. Spectr. Rel. Phenom. 185 314 [36] Bokor J 1989 Science 246 1130 [37] Schmuttenmaer C A, Aeschlimann M, Elsayed-Ali H E, Miller R J D, Mantell D A, Cao J and Gao Y 1994 Phys. Rev. B 50 8957 [38] Haight R 1995 Surf. Sci. Rep. 21 275 [39] Petek H and Ogawa S 1997 Prog. Surf. Sci. 56 239 [40] Weinelt M 2002 J. Phys.: Condens. Matter 14 R1099 [41] Winkelmann A, Chiang C T, Bisio F, Lin W C, Kirschner J and Petek H 2010 Dynamics at Solid State Surfaces and Interfaces: Vol. 1: Current Developments (Germany: WILEY-VCH) pp. 33-49 [42] Bauer M, Marienfeld A and Aeschlimann M 2015 Prog. Surf. Sci. 90 319 [43] Woodruff D P, Smith N V, Johnson P D and Royer W A 1982 Phys. Rev. B 26 2943 [44] Johnson P D and Smith N V 1983 Phys. Rev. B 27 2525 [45] Kevan S 1983 Phys. Rev. B 28 4822 [46] Giesen K, Hage F, Riess H J Steinmann, Haight W R, Beigang R, Dreyfus R, Avouris Ph and Himpsel F J 1987 Physica Scripta 35 578 [47] Kubiak G D 1988 Surf. Sci. 201 L475 [48] Strocov V N, Claessen R, Nicolay G, Hüfner S, Kimura A, Harasawa A, Shin S, Kakizaki A, Starnberg H I, Nilsson P O and Blaha P 2001 Phys. Rev. B 63 205108 [49] Bisio F, Nyvlt M, Franta 1J, Petek H and Kirschner J 2006 Phys. Rev. Lett. 96 087601 [50] Banfi F, Giannetti C, Ferrini G, Galimberti G, Pagliara S, Fausti D and Parmigiani F 2005 Phys. Rev. Lett. 94 037601 [51] Li B, Yang C, Li H, Ji B, Lin J and Tomie T 2019 AIP Adv. 9 025112 [52] Aeschlimann M, Schmuttenmaer C A, Elsayed-Ali H E, Miller R J D, Cao J, Gao Y and Mantell D A 1995 J. Chem. Phys. 102 8606 [53] Schmidt O, Fecher G H, Hwu Y and Schoenhense G 2001 Surf. Sci. 687 482 [54] Fecher G H, Schmidt O, Hwu Y and Schoenhense G 2002 J. Electron Spectr. Relat. Phenom. 126 77 [55] Gloskovskii A, Valdaitsev D, Nepijko S A, Schoenhense G and Rethfeld B 2007 Surf. Sci. 601 4706 [56] Georgiev N Martinotti D and Ernst H-J 2007 Phys. Rev. B 75 085430 [57] Toyoda T, Yindeesuk W, Okuno T, Akimoto M, Kamiyama K, Hayase S and Shen Q 2015 RSC Adv. 5 49623 [58] Anpo M, Shima T, Kodama S and Kubokawa Y 1987 J. Phys. Chem. 91 4305 [59] Tang H, Prasad K, Sanjinés R, Schmid P E and Lévy F 1994 J. Appl. Phys. 75 2042 [60] Serpone N, Lawless D and Khairutdinovt R 1995 J. Phys. Chem. 99 16646 [61] Aoki A and Nogami G 1996 J. Electrochem. Soc. 143 L191 [62] Boschloo G K, Goossens A and Schoonman J 1997 J. Electrochem. Soc. 144 1311 [63] Takikawa H, Matsui T, Sakakibara T, Bendavid A and Martin P J 1999 Thin Solid Films 348 145 [64] Wang Z, Helmersson U and Käll P O 2002 Thin Solid Films 405 50 [65] Hasan M M, Haseeb A, Saidur R, Msjuki H H and Hamdi M 2010 Opt. Mater. 32 690 [66] López R and Gómez R 2012 J. Sol-Gel Sci. Technol. 61 1 [67] Xu H, Reunchan P, Ouyang S, Tong H, Umezawa N, Kako T and Ye J 2013 Chem. Mater. 25 405 [68] Fujisawa J, Eda T and Hanaya M 2017 Chem. Phys. Lett. 685 23 [69] Daude N, Gout C and Jouanin C 1977 Phys. Rev. B 15 3229 [70] Liu B, Wen L and Zhao X 2007 Mat. Chem. Phys. 106 350 [71] Vos K 1977 J. Phys. C: Solid State Phys. 10 3917 [72] Fisher D W 1972 Phys. Rev. B 5 4219 [73] Argondizzo A, Cui X, Wang C, Sun H, Shang H, Zhao J and Petek H 2015 Phys. Rev. B 91 155429 [74] Link S and El-Sayed M A 1999 J. Phys. Chem. B 103 8410 [75] Bauer M and Aeschlimann M 2002 J. Electron Spectr. Rel. Phenom. 124 225 [76] Aeschlimann M, Schmuttenmaer C A, Elsayed-Ali H E and Miller R J D 1995 J. Chem. Phys. 102 8606 [77] Knoesel E, Hotzel A, Hertel T, Wolf M and Ertl G 1996 Surf. Sci. 368 76 [78] Tan S, Argondizzo A, Wang C, Cui X and Petek H 2017 Phys. Rev. X 7 011004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|