Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114214    DOI: 10.1088/1674-1056/ac1b8d
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles

Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚)
School of Science, Changchun University of Science and Technology, Changchun 130022, China
Abstract  A theory of multiphoton photoemission is derived to explain the experimentally observed monotonic decrease with the wavelength in the electron yield of TiO2 nanoparticles (NPs) by as large as four orders of magnitude. It is found that the fitting parameter corresponds to the energy position of Ti3d eg and t2g states, and the derived theory is a novel diagnostic of excited states in the conduction band, very importantly, applicable to individual NPs. The difference between four-photon slope NPs and three-photon slope NPs is attributed to the difference in defect density. The success of the theory in solving the puzzling result shows that thermal emission from high-lying levels may dominate over direct multiphoton ionization in solids when the photon number larger than four is required.
Keywords:  multiphoton photoemission      nanoparticles      thermal emission      TiO2  
Received:  20 June 2021      Revised:  25 July 2021      Accepted manuscript online:  07 August 2021
PACS:  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.79.Ek (Solar collectors and concentrators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850109, 11474040, 61605017, and 61775021) and the “111” Project of China (Grant No. D17017).
Corresponding Authors:  Jingquan Lin, Toshihisa Tomie     E-mail:;

Cite this article: 

Bochao Li(李博超), Hao Li(李浩), Chang Yang(杨畅), Boyu Ji(季博宇), Jingquan Lin(林景全), and Toshihisa Tomie(富江敏尚) Theory of multiphoton photoemission disclosing excited states in conduction band of individual TiO2 nanoparticles 2021 Chin. Phys. B 30 114214

[1] Schwank J 1983 Gold Bull. 18 103
[2] Haruta M, Kobayashi T, Sano H and Yamada N 1987 Chem. Lett. 16 405
[3] Janssens T V W, Clausen B S, Hvolbæk B, Falsig H, Christensen C H, Bligaard T and Norskov J K 2007 Topics in Catalysis 44 15
[4] Overbury S H, Schwartz V, Mullins D R, Yan W and Dai S 2006 J. Catalysis 241 56
[5] Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J and Chen M 2012 Nat. Mater. 11 775
[6] Linic S, Christopher P and Ingram D B 2011 Nat. Mater. 10 911
[7] Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P and Halas N J 2013 Nano Lett. 13 240
[8] Clavero C 2014 Nat. Photon. 8 95
[9] Chalabi H, Schoen D and Brongersma M L 2014 Nano Lett. 14 1374
[10] Kumar D, Lee A, Lee T, Lim M and Lim D K 2016 Nano Lett. 16 1760
[11] Tan S, Argondizzo A, Ren J, Liu L, Zhao J and Petek H 2017 Nat. Photon. 11 806
[12] Kazuma E, Jung J, Ueba H, Trenary M and Kim Y 2018 Science 360 521
[13] Zhang Y, He S, Guo W, Hu Y, Huang Ji, Mulcahy J R and Wei W D 2018 Chem. Rev. 118 2927
[14] Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X and Fang Z 2019 Nano Lett. 19 775
[15] Li B, Li H, Yang C, Ji B, Lin J and Tomie T 2019 AIP Adv. 9 085321
[16] Li B, Li H, Yang C, Ji B, Lin J and Tomie T 2020 Catalysts 10 916
[17] Cronemeyer D C 1952 Phys. Rev. 87 876
[18] Breckenridge R G and Hosler W R 1953 Phys. Rev. 91 793
[19] Ghosh A M, Wakim F G and Addiss R R Jr. 1969 Phys. Rev. 184 979
[20] Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z, Hansen J O, Matthiesen J, Blekinge-Rasmussen A, Lægsgaard E, Hammer B and Besenbacher F 2008 Science 320 1755
[21] Henderson M A 2011 Surf. Sci. Rep. 66 185
[22] Zhang Z and Yates Jr J T 2012 Chem. Rev. 112 5520
[23] Fujishima A and Honda K 1972 Nature 238 37
[24] O'Regan B and Grätzel M 1991 Nature 353 737
[25] Fujishima A, Zhang X and Tryk D K 2008 Surf. Sci. Rep. 63 515
[26] Furube A and Hashimoto S 2017 NPG Asia Mater. 9 e454
[27] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[28] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[29] Seo J, Noh J H and Seok I 2016 Acc. Chem. Res. 49 562
[30] Giordano F, Abate A, Correa Baena J P, Saliba M, Matsui T, Im S H, Zakeeruddin S M, Nazeeruddin M K, Hagfeldt A and Graetzel M 2016 Nat. Commun. 7 1
[31] Ruankham P and Sagawa T 2018 J. Mater. Sci.: Mater. Electron. 29 9058
[32] Kaewprajak A, Kumnorkaew P and Sagawa T 2019 J. Mater. Sci.: Mater. Electron. 30 4041
[33] Beane G, Devkota T, Brown B S and Hartland G V 2019 Rep. Prog. Phys. 82 016401
[34] Dąbrowski M, Dai Y and Petek H 2020 Chem. Rev. 120 6247
[35] Bauer E 2012 J. Electron. Spectr. Rel. Phenom. 185 314
[36] Bokor J 1989 Science 246 1130
[37] Schmuttenmaer C A, Aeschlimann M, Elsayed-Ali H E, Miller R J D, Mantell D A, Cao J and Gao Y 1994 Phys. Rev. B 50 8957
[38] Haight R 1995 Surf. Sci. Rep. 21 275
[39] Petek H and Ogawa S 1997 Prog. Surf. Sci. 56 239
[40] Weinelt M 2002 J. Phys.: Condens. Matter 14 R1099
[41] Winkelmann A, Chiang C T, Bisio F, Lin W C, Kirschner J and Petek H 2010 Dynamics at Solid State Surfaces and Interfaces: Vol. 1: Current Developments (Germany: WILEY-VCH) pp. 33-49
[42] Bauer M, Marienfeld A and Aeschlimann M 2015 Prog. Surf. Sci. 90 319
[43] Woodruff D P, Smith N V, Johnson P D and Royer W A 1982 Phys. Rev. B 26 2943
[44] Johnson P D and Smith N V 1983 Phys. Rev. B 27 2525
[45] Kevan S 1983 Phys. Rev. B 28 4822
[46] Giesen K, Hage F, Riess H J Steinmann, Haight W R, Beigang R, Dreyfus R, Avouris Ph and Himpsel F J 1987 Physica Scripta 35 578
[47] Kubiak G D 1988 Surf. Sci. 201 L475
[48] Strocov V N, Claessen R, Nicolay G, Hüfner S, Kimura A, Harasawa A, Shin S, Kakizaki A, Starnberg H I, Nilsson P O and Blaha P 2001 Phys. Rev. B 63 205108
[49] Bisio F, Nyvlt M, Franta 1J, Petek H and Kirschner J 2006 Phys. Rev. Lett. 96 087601
[50] Banfi F, Giannetti C, Ferrini G, Galimberti G, Pagliara S, Fausti D and Parmigiani F 2005 Phys. Rev. Lett. 94 037601
[51] Li B, Yang C, Li H, Ji B, Lin J and Tomie T 2019 AIP Adv. 9 025112
[52] Aeschlimann M, Schmuttenmaer C A, Elsayed-Ali H E, Miller R J D, Cao J, Gao Y and Mantell D A 1995 J. Chem. Phys. 102 8606
[53] Schmidt O, Fecher G H, Hwu Y and Schoenhense G 2001 Surf. Sci. 687 482
[54] Fecher G H, Schmidt O, Hwu Y and Schoenhense G 2002 J. Electron Spectr. Relat. Phenom. 126 77
[55] Gloskovskii A, Valdaitsev D, Nepijko S A, Schoenhense G and Rethfeld B 2007 Surf. Sci. 601 4706
[56] Georgiev N Martinotti D and Ernst H-J 2007 Phys. Rev. B 75 085430
[57] Toyoda T, Yindeesuk W, Okuno T, Akimoto M, Kamiyama K, Hayase S and Shen Q 2015 RSC Adv. 5 49623
[58] Anpo M, Shima T, Kodama S and Kubokawa Y 1987 J. Phys. Chem. 91 4305
[59] Tang H, Prasad K, Sanjinés R, Schmid P E and Lévy F 1994 J. Appl. Phys. 75 2042
[60] Serpone N, Lawless D and Khairutdinovt R 1995 J. Phys. Chem. 99 16646
[61] Aoki A and Nogami G 1996 J. Electrochem. Soc. 143 L191
[62] Boschloo G K, Goossens A and Schoonman J 1997 J. Electrochem. Soc. 144 1311
[63] Takikawa H, Matsui T, Sakakibara T, Bendavid A and Martin P J 1999 Thin Solid Films 348 145
[64] Wang Z, Helmersson U and Käll P O 2002 Thin Solid Films 405 50
[65] Hasan M M, Haseeb A, Saidur R, Msjuki H H and Hamdi M 2010 Opt. Mater. 32 690
[66] López R and Gómez R 2012 J. Sol-Gel Sci. Technol. 61 1
[67] Xu H, Reunchan P, Ouyang S, Tong H, Umezawa N, Kako T and Ye J 2013 Chem. Mater. 25 405
[68] Fujisawa J, Eda T and Hanaya M 2017 Chem. Phys. Lett. 685 23
[69] Daude N, Gout C and Jouanin C 1977 Phys. Rev. B 15 3229
[70] Liu B, Wen L and Zhao X 2007 Mat. Chem. Phys. 106 350
[71] Vos K 1977 J. Phys. C: Solid State Phys. 10 3917
[72] Fisher D W 1972 Phys. Rev. B 5 4219
[73] Argondizzo A, Cui X, Wang C, Sun H, Shang H, Zhao J and Petek H 2015 Phys. Rev. B 91 155429
[74] Link S and El-Sayed M A 1999 J. Phys. Chem. B 103 8410
[75] Bauer M and Aeschlimann M 2002 J. Electron Spectr. Rel. Phenom. 124 225
[76] Aeschlimann M, Schmuttenmaer C A, Elsayed-Ali H E and Miller R J D 1995 J. Chem. Phys. 102 8606
[77] Knoesel E, Hotzel A, Hertel T, Wolf M and Ertl G 1996 Surf. Sci. 368 76
[78] Tan S, Argondizzo A, Wang C, Cui X and Petek H 2017 Phys. Rev. X 7 011004
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[4] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[9] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[10] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[13] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[14] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[15] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
No Suggested Reading articles found!