Abstract The equivalent medium theory of metamaterials provides a way to obtain their effective constitutive parameters. However, because of its non-reciprocity, the complexity of the electromagnetic coupling, and a metallic bottom layer, it has been challenging to retrieve them from a metamaterial absorber. In this paper, we propose a method without any approximation to obtain them, in which the non-reciprocity and the strong electromagnetic coupling are included. Compared with the three methods such as symmetric metamaterial method, asymmetric metamaterial method and metasurface method, our method can reveal the metamaterial absorber's electrical and magnetic resonance and show its electromagnetic coupling coefficients. To deal with a metamaterial absorber with a metallic bottom layer, four corners of the metallic bottom layer in the unit cell are removed, making it possible to retrieve the electromagnetic parameters. Surprisingly, these results show that the metamaterial absorber with a metallic bottom layer in our example operates in a negative refraction state at the half absorption frequencies, which helps further understand the absorbing mechanism of these metamaterial absorbers.
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南) Retrieval of the effective constitutive parameters from metamaterial absorbers 2021 Chin. Phys. B 30 117803
[1] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett.100 207402 [2] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express16 7181 [3] Liu X L, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett.104 207403 [4] Aydin K, Ferry V E, Briggs R M and Atwater H A 2011 Nat. Commun.2 517 [5] Hedayati M K, Zillohu A U, Strunskus T, Faupel F and Elbahri M 2014 Appl. Phys. Lett.104 041103 [6] Wen Q Y, Xie Y S, Zhang H W, Yang Q H, Li Y X and Liu Y L 2009 Opt. Express17 20256 [7] Chen H T 2012 Opt. Express20 7165 [8] Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R and Padilla W J 2009 Phys. Rev. B79 6 [9] Smith D R, Schultz S, Markos P and Soukoulis C M 2002 Phys. Rev. B65 195104 [10] Szabo Z, Park G H, Hedge R and Li E P 2010 IEEE Trans. Microw. Theory Tech.58 2646 [11] Luukkonen O, Maslovski S I and Tretyakov S A 2011 IEEE Antennas Wirel. Propag. Lett.10 1295 [12] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E71 036617 [13] Holloway C L, Kuester E F and Dienstfrey A 2011 IEEE Antennas Wirel. Propag. Lett.10 1507 [14] Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y and Ling W W 2009 J. Phys. D-Appl. Phys.42 095408 [15] Ye D X, Wang Z, Wang Z Y, Xu K W, Zhang B, Huangfu J T, Li C Z and Ran L X 2012 IEEE Trans. Antennas Propag.60 5164 [16] Zhang X Q, Xu N N, Qu K N, Tian Z, Singh R, Han J G, Agarwal G S and Zhang W L 2015 Sci. Rep.5 10737 [17] Han G M 2018 Mater. Res. Express5 045803 [18] Lee J, Yoon Y J and Lim S 2012 Etri J.34 126 [19] Wen Y Z, Ma W, Bailey J, Matmon G, Aeppli G and Yu X M 2014 Appl. Phys. Lett.105 141111 [20] Lee D, Sung H K and Lim S 2016 Appl. Phys. B-Lasers Opt.122 8 [21] Tak J, Jin Y and Choi J 2016 Microw Opt. Techn. Lett.58 2052 [22] Astorino M D, Frezza F and Tedeschi N 2017 J. Appl. Phys.121 063103 [23] Singh D and Srivastava V M 2018 Wirel. Pers. Commun.104 129 [24] He L H, Shan D Y, He J, Liu S, Ghen Z Q and Xu H 2019 Mod. Phys. Lett. B33 1950057 [25] Zhang J M, He D L, Wang G W, Wang P, Qiao L, Wang T and Li F S 2019 Chin. Phys. B28 058401 [26] Zhong M 2020 Opt. Mater.100 109712 [27] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B78 241103 [28] Bhattacharyya S and Srivastava K V 2014 J. Appl. Phys.115 064508 [29] Deng G S, Xia T Y, Yang J and Yin Z P 2018 IET Microw. Antennas Propag.12 1120 [30] Agarwal M and Meshram M K 2018 AIP Adv.8 095016 [31] Kalraiya S, Chaudhary R K, Abdalla M A and Gangwar R K 2019 Mater. Res. Express6 045802 [32] Garg P and Jain P 2020 AEU-Int. J. Electron. Commun.116 153063 [33] Jain P, Singh A K, Pandey J K, Garg S, Bansal S, Agarwal M, Kumar S, Sardana N and Gupta N 2020 IET Microw. Antennas Propag.14 390 [34] Chen X, Grzegorczyk T M, Wu B I, Pacheco J and Kong J A 2004 Phys. Rev. E70 016608 [35] Popa B I and Cummer S A 2012 Phys. Rev. B85 205101 [36] Xu X H, Liu Y, Gan Y H and Liu W M 2015 Acta Phys. Sin.64 044101 (in Chinese)
Design of a varactor-tunable metamaterial absorber Lin Bao-Qin (林宝勤), Da Xin-Yu (达新宇), Zhao Shang-Hong (赵尚弘), Meng Wen (蒙文), Li Fan (李凡), Fang Ying-Wu (方英武), Wang Jia-Fu (王甲富). Chin. Phys. B, 2014, 23(6): 067801.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.