Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117506    DOI: 10.1088/1674-1056/ac1e1d
Special Issue: SPECIAL TOPIC — Two-dimensional magnetic materials and devices
Prev   Next  

Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures

Yu-Ting Niu(牛宇婷)1,2, Xiao Lu(鲁晓)1,2, Zhong-Tai Shi(石钟太)1,2, and Bo Peng(彭波)1,2,†
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  Two-dimensional ferromagnetic van der Waals (2D vdW) heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials, and for manipulating spin degree of freedom at the limit of few atomic layers, which empower next-generation spintronic and memory devices. However, to date, the electronic properties of 2D ferromagnetic heterostructures still remain elusive. Here, we report an unambiguous magnetoresistance behavior in CrI3/graphene heterostructures, with a maximum magnetoresistance ratio of 2.8%. The magnetoresistance increases with increasing magnetic field, which leads to decreasing carrier densities through Lorentz force, and decreases with the increase of the bias voltage. This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.
Keywords:  two-dimensional ferromagnetic      van der Waals heterostructure      magnetoresistance  
Received:  01 June 2021      Revised:  15 July 2021      Accepted manuscript online:  17 August 2021
PACS:  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872039) and Science and Technology Program of Sichuan, China (Grant No. M112018JY0025).
Corresponding Authors:  Bo Peng     E-mail:  bo_peng@uestc.edu.cn

Cite this article: 

Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波) Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures 2021 Chin. Phys. B 30 117506

[1] Martinez A, Fuse K and Yamashita S 2011 Appl. Phys. Lett. 99 121107
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K S V 2005 Proc. Natl. Acad. Sci. 102 10451
[4] Yang H P, Yuan W J, Luo J and Zhu J 2018 Chin. Phys. B 27 078106
[5] Drögeler M, Franzen C, Volmer F, Pohlmann T, Banszerus L, Wolter M, Watanabe K, Taniguchi T, Stampfer C and Beschoten B 2016 Nano Lett. 16 3533
[6] Ingla-Aynés J, Guimarães M H D, Meijerink R J, Zomer P J and van Wees B J 2015 Phys. Rev. 92 201410(R)
[7] Gebeyehu Z M, Parui S, Sierra J F, Timmermans M, Esplandiu M J, Brems S, Huyghebaert C, Garello K, Costache M V and Valenzuela S O 2019 2D Mater. 6 034003
[8] Kamalakar M V, Groenveld C, Dankert A and Dash S P 2015 Nat. Commun. 6 6766
[9] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[10] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X D 2018 Science 360 1214
[11] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[12] Dankert A and Dash S P 2017 Nat. Commun. 8 16093
[13] Xie Q Y, Wu M, Chen L M, Bai G, Zou W Q, Wang W and He L 2019 Chin. Phys. B 28 056102
[14] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[15] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002
[16] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009
[17] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[18] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L and Zhang Q M 2019 Chin. Phys. B 28 056301
[19] Chen X, Lin Z Z and Cheng L R 2020 Chin. Phys. B 30 047502
[20] Liu Z, Guo K, Hu G W, Shi Z T, Li Y, Zhang L B, Chen H Y, Zhang L, Zhou P H, Lu H P, Lin M L, Liu S Z, Cheng Y C, Liu X L, Xie J L, Bi L, Tan P H, Deng L J, Qiu C W and Peng B 2020 Sci. Adv. 6 eabc7628
[21] Liu Z, Deng L J and Peng B 2020 Nano Research 14 1802
[22] Guo K, Deng B W, Liu Z, Gao C F, Shi Z T, Bi L, Zhang L, Lu H P, Zhou P H, Zhang L B, Cheng Y C and Peng B 2020 Sci. China Mater. 63 413
[23] Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K and Wang K Y 2020 Sci. Bull. 65 1072
[24] Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K and Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921
[25] Wang Y M, Tian S J, Li C H, Jin F, Ji J T, Lei H C and Zhang Q M 2020 Chin. Phys. B 29 056301
[26] Fabian J, Matos-Abiague A, Ertler C, Stano P and Žutić I 2007 Acta Physica Slovaca 57 565
[27] Prinz G A 1990 Science 250 1092
[28] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270
[29] Jiang S W, Shan J and Mak K F 2018 Nat. Mater. 17 406
[30] Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G M, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotech. 12 757
[31] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X D 2017 Science Advances 3 e1603113
[32] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X D 2018 Nano Lett. 18 3823
[33] Zhang Z Y, Ni X J, Huang H Q, Hu L and Liu F 2019 Phys. Rev. B 99 115441
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[4] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[5] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[6] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[7] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[8] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[9] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[10] Large positive magnetoresistance in photocarrier-doped potassium tantalites
Rui-Shu Yang(杨睿姝), Ding-Bang Wang(王定邦), Yang Zhao(赵阳), Shuan-Hu Wang(王拴虎), and Ke-Xin Jin(金克新). Chin. Phys. B, 2022, 31(12): 127302.
[11] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[12] Recent advances in two-dimensional layered and non-layered materials hybrid heterostructures
Haixin Ma(马海鑫), Yanhui Xing(邢艳辉), Boyao Cui(崔博垚), Jun Han(韩军), Binghui Wang(王冰辉), and Zhongming Zeng(曾中明). Chin. Phys. B, 2022, 31(10): 108502.
[13] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[14] Probing the magnetization switching with in-plane magnetic anisotropy through field-modified magnetoresistance measurement
Runrun Hao(郝润润), Kun Zhang(张昆), Yinggang Li(李迎港), Qiang Cao(曹强), Xueying Zhang(张学莹), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(1): 017502.
[15] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
No Suggested Reading articles found!