Special Issue:
SPECIAL TOPIC — Two-dimensional magnetic materials and devices
|
|
|
Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures |
Yu-Ting Niu(牛宇婷)1,2, Xiao Lu(鲁晓)1,2, Zhong-Tai Shi(石钟太)1,2, and Bo Peng(彭波)1,2,† |
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China |
|
|
Abstract Two-dimensional ferromagnetic van der Waals (2D vdW) heterostructures have opened new avenues for creating artificial materials with unprecedented electrical and optical functions beyond the reach of isolated 2D atomic layered materials, and for manipulating spin degree of freedom at the limit of few atomic layers, which empower next-generation spintronic and memory devices. However, to date, the electronic properties of 2D ferromagnetic heterostructures still remain elusive. Here, we report an unambiguous magnetoresistance behavior in CrI3/graphene heterostructures, with a maximum magnetoresistance ratio of 2.8%. The magnetoresistance increases with increasing magnetic field, which leads to decreasing carrier densities through Lorentz force, and decreases with the increase of the bias voltage. This work highlights the feasibilities of applying two-dimensional ferromagnetic vdW heterostructures in spintronic and memory devices.
|
Received: 01 June 2021
Revised: 15 July 2021
Accepted manuscript online: 17 August 2021
|
PACS:
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872039) and Science and Technology Program of Sichuan, China (Grant No. M112018JY0025). |
Corresponding Authors:
Bo Peng
E-mail: bo_peng@uestc.edu.cn
|
Cite this article:
Yu-Ting Niu(牛宇婷), Xiao Lu(鲁晓), Zhong-Tai Shi(石钟太), and Bo Peng(彭波) Observation of magnetoresistance in CrI3/graphene van der Waals heterostructures 2021 Chin. Phys. B 30 117506
|
[1] Martinez A, Fuse K and Yamashita S 2011 Appl. Phys. Lett. 99 121107 [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [3] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K S V 2005 Proc. Natl. Acad. Sci. 102 10451 [4] Yang H P, Yuan W J, Luo J and Zhu J 2018 Chin. Phys. B 27 078106 [5] Drögeler M, Franzen C, Volmer F, Pohlmann T, Banszerus L, Wolter M, Watanabe K, Taniguchi T, Stampfer C and Beschoten B 2016 Nano Lett. 16 3533 [6] Ingla-Aynés J, Guimarães M H D, Meijerink R J, Zomer P J and van Wees B J 2015 Phys. Rev. 92 201410(R) [7] Gebeyehu Z M, Parui S, Sierra J F, Timmermans M, Esplandiu M J, Brems S, Huyghebaert C, Garello K, Costache M V and Valenzuela S O 2019 2D Mater. 6 034003 [8] Kamalakar M V, Groenveld C, Dankert A and Dash S P 2015 Nat. Commun. 6 6766 [9] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706 [10] Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W and Xu X D 2018 Science 360 1214 [11] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571 [12] Dankert A and Dash S P 2017 Nat. Commun. 8 16093 [13] Xie Q Y, Wu M, Chen L M, Bai G, Zou W Q, Wang W and He L 2019 Chin. Phys. B 28 056102 [14] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [15] Lado J L and Fernández-Rossier J 2017 2D Mater. 4 035002 [16] Wang X Z, Du K Z, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q H 2016 2D Mater. 3 031009 [17] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 [18] Wang Y M, Zhang J F, Li C H, Ma X L, Ji J T, Jin F, Lei H C, Liu K, Zhang W L and Zhang Q M 2019 Chin. Phys. B 28 056301 [19] Chen X, Lin Z Z and Cheng L R 2020 Chin. Phys. B 30 047502 [20] Liu Z, Guo K, Hu G W, Shi Z T, Li Y, Zhang L B, Chen H Y, Zhang L, Zhou P H, Lu H P, Lin M L, Liu S Z, Cheng Y C, Liu X L, Xie J L, Bi L, Tan P H, Deng L J, Qiu C W and Peng B 2020 Sci. Adv. 6 eabc7628 [21] Liu Z, Deng L J and Peng B 2020 Nano Research 14 1802 [22] Guo K, Deng B W, Liu Z, Gao C F, Shi Z T, Bi L, Zhang L, Lu H P, Zhou P H, Zhang L B, Cheng Y C and Peng B 2020 Sci. China Mater. 63 413 [23] Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K and Wang K Y 2020 Sci. Bull. 65 1072 [24] Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K and Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921 [25] Wang Y M, Tian S J, Li C H, Jin F, Ji J T, Lei H C and Zhang Q M 2020 Chin. Phys. B 29 056301 [26] Fabian J, Matos-Abiague A, Ertler C, Stano P and Žutić I 2007 Acta Physica Slovaca 57 565 [27] Prinz G A 1990 Science 250 1092 [28] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270 [29] Jiang S W, Shan J and Mak K F 2018 Nat. Mater. 17 406 [30] Zhao C, Norden T, Zhang P Y, Zhao P Q, Cheng Y C, Sun F, Parry J P, Taheri P, Wang J Q, Yang Y H, Scrace T, Kang K F, Yang S, Miao G M, Sabirianov R, Kioseoglou G, Huang W, Petrou A and Zeng H 2017 Nat. Nanotech. 12 757 [31] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X D 2017 Science Advances 3 e1603113 [32] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X D 2018 Nano Lett. 18 3823 [33] Zhang Z Y, Ni X J, Huang H Q, Hu L and Liu F 2019 Phys. Rev. B 99 115441 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|