Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116802    DOI: 10.1088/1674-1056/ac0037
RAPID COMMUNICATION Prev   Next  

Realization of semiconducting Cu2Se by direct selenization of Cu(111)

Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉)
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Bulk group IB transition-metal chalcogenides have been widely explored due to their applications in thermoelectrics. However, a layered two-dimensional form of these materials has been rarely reported. Here, we realize semiconducting Cu2Se by direct selenization of Cu(111). Scanning tunneling microcopy measurements combined with first-principles calculations allow us to determine the structural and electronic properties of the obtained structure. X-ray photoelectron spectroscopy data reveal chemical composition of the sample, which is Cu2Se. The observed moiré pattern indicates a lattice mismatch between Cu2Se and the underlying Cu(111)-$\sqrt{3}$×$\sqrt{3}$ surface. Differential conductivity obtained by scanning tunneling spectroscopy demonstrates that the synthesized Cu2Se exhibits a band gap of 0.78 eV. Furthermore, the calculated density of states and band structure demonstrate that the isolated Cu2Se is a semiconductor with an indirect band gap of ~ 0.8 eV, which agrees quite well with the experimental results. Our study provides a simple pathway varying toward the synthesis of novel layered 2D transition chalcogenides materials.
Keywords:  Cu2Se      scanning tunneling microscopy      scanning tunneling spectroscopy      semiconducting      selenization  
Received:  28 April 2021      Revised:  06 May 2021      Accepted manuscript online:  12 May 2021
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11904094, 51972106, and 11804089), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ50034 and 2019JJ50073).
Corresponding Authors:  Lijie Zhang, Zhihui Qin     E-mail:  lijiezhang@hnu.edu.cn;zhqin@hnu.edu.cn

Cite this article: 

Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉) Realization of semiconducting Cu2Se by direct selenization of Cu(111) 2021 Chin. Phys. B 30 116802

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Xing S, Lei L, Dong H, Guo J, Cao F, Gu S, Hussain S, Pang F, Ji W, Xu R and Cheng Z 2020 Chin. Phys. B 29 096801
[3] Fan P, Zhang R Z, Qi J, Li E, Qian G J, Chen H, Wang D F, Zheng Q, Wang Q, Lin X, Zhang Y Y, Du S, Hofer W A and Gao H J 2020 Chin. Phys. B 29 098102
[4] Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett. 36 028102
[5] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[6] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[7] Wu Z B, Zhang Y Y, Li G, Du S and Gao H J 2018 Chin. Phys. B 27 077302
[8] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[9] Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I and Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804
[10] Deng J, Ablat G, Yang Y, Fu X, Wu Q, Li P, Zhang L, Safaei A, Zhang L and Qin Z 2021 J. Phys.: Condens. Matter. 33 225001
[11] Qin Z, Pan J, Lu S, Shao Y, Wang Y, Du S, Gao H J and Cao G 2017 Adv. Mater. 29 1606046
[12] Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko A N, Lingenfelder M, Brocks G, Poelsema B, Katsnelson M I and Zandvliet H J W 2015 J. Phys.: Condens. Matter 27 443002
[13] Qin Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)
[14] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[15] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287
[16] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163
[17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[18] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L and Song B 2020 Adv. Mater. 33 1907818
[19] Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, Tian Y, Yin L J, Huang W Q, Zhang W, Wong P K J, Zhang L, Wee A T S and Qin Z 2021 ACS Nano 15 4481
[20] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese)
[21] Zhang Y, Wang Y, Xi L, Qiu R, Shi X, Zhang P and Zhang W 2014 J. Chem. Phys. 140 074702
[22] Shah J, Sohail H M, Uhrberg R I G and Wang W 2020 J. Phys. Chem. Lett. 11 1609
[23] Unzelmann M, Bentmann H, Eck P, Kisslinger T, Geldiyev B, Rieger J, Moser S, Vidal R C, Kissner K, Hammer L, Schneider M A, Fauster T, Sangiovanni G, Di Sante D and Reinert F 2020 Phys. Rev. Lett. 124 176401
[24] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
[25] Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717
[26] Guo Q, Zhong Y, Huang M, Lu S and Yu Y 2020 Thin Solid Films 693 137709
[27] Walen H, Liu D J, Oh J, Yang H J, Kim Y and Thiel P A 2016 Chemphyschem 17 2137
[28] Nishimura T, Toki S, Sugiura H, Nakada K and Yamada A 2016 Appl. Phys. Express 9 092301
[29] Nguyen M C, Choi J H, Zhao X, Wang C Z, Zhang Z and Ho K M 2013 Phys. Rev. Lett. 111 165502
[30] Qian K, Gao L, Chen X, et al. 2020 Adv. Mater. 32 1908314
[31] Wang Y, Li L, Yao W, Song S, Sun J, Pan J, Ren X, Li C, Okunishi E and Wang Y Q 2015 Nano Lett. 15 4013
[32] Zhang S, Song Y, Li J M, Wang Z, Liu C, Wang J O, Gao L, Lu J C, Zhang Y Y, Lin X, Pan J, Du S X and Gao H J 2020 Chin. Phys. B 29 077301
[33] Liu B, Zhuang Y, Que Y, Xu C and Xiao X 2020 Chin. Phys. B 29 056801
[34] Sun H, Liang Z, Shen K, Luo M, Hu J, Huang H, Zhu Z, Li Z, Jiang Z and Song F 2018 Appl. Surf. Sci. 428 623
[35] Blöchl P E 1994 Phys. Rev. B 50 17953
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382
[41] Guo Q, Zhong Y, Huang M, Lu S and Yu Y 2020 Thin Solid Films 693 137709
[42] Chen H Y, Chen L, Lin J, Tan K L and Li J 1997 Inorg. Chem. 36 1417
[43] Chen X Q, Li Z, Bai Y, Sun Q, Wang L Z and Dou S X 2015 Chem. Eur. J. 21 1055
[44] Riha S C, Johnson D C and Prieto A L 2011 J. Am. Chem. Soc. 133 1383
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[7] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[8] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[9] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[10] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[11] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[12] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[13] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[14] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[15] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
No Suggested Reading articles found!