|
|
Realization of semiconducting Cu2Se by direct selenization of Cu(111) |
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰)†, and Zhihui Qin(秦志辉)‡ |
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract Bulk group IB transition-metal chalcogenides have been widely explored due to their applications in thermoelectrics. However, a layered two-dimensional form of these materials has been rarely reported. Here, we realize semiconducting Cu2Se by direct selenization of Cu(111). Scanning tunneling microcopy measurements combined with first-principles calculations allow us to determine the structural and electronic properties of the obtained structure. X-ray photoelectron spectroscopy data reveal chemical composition of the sample, which is Cu2Se. The observed moiré pattern indicates a lattice mismatch between Cu2Se and the underlying Cu(111)-$\sqrt{3}$×$\sqrt{3}$ surface. Differential conductivity obtained by scanning tunneling spectroscopy demonstrates that the synthesized Cu2Se exhibits a band gap of 0.78 eV. Furthermore, the calculated density of states and band structure demonstrate that the isolated Cu2Se is a semiconductor with an indirect band gap of ~ 0.8 eV, which agrees quite well with the experimental results. Our study provides a simple pathway varying toward the synthesis of novel layered 2D transition chalcogenides materials.
|
Received: 28 April 2021
Revised: 06 May 2021
Accepted manuscript online: 12 May 2021
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11904094, 51972106, and 11804089), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ50034 and 2019JJ50073). |
Corresponding Authors:
Lijie Zhang, Zhihui Qin
E-mail: lijiezhang@hnu.edu.cn;zhqin@hnu.edu.cn
|
Cite this article:
Yumu Yang(杨雨沐), Qilong Wu(吴奇龙), Jiaqi Deng(邓嘉琦), Jing Wang(王静), Yu Xia(夏雨), Xiaoshuai Fu(富晓帅), Qiwei Tian(田麒玮), Li Zhang(张力), Long-Jing Yin(殷隆晶), Yuan Tian(田园), Sheng-Yi Xie(谢声意), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉) Realization of semiconducting Cu2Se by direct selenization of Cu(111) 2021 Chin. Phys. B 30 116802
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Xing S, Lei L, Dong H, Guo J, Cao F, Gu S, Hussain S, Pang F, Ji W, Xu R and Cheng Z 2020 Chin. Phys. B 29 096801 [3] Fan P, Zhang R Z, Qi J, Li E, Qian G J, Chen H, Wang D F, Zheng Q, Wang Q, Lin X, Zhang Y Y, Du S, Hofer W A and Gao H J 2020 Chin. Phys. B 29 098102 [4] Dong L, Wang A W, Li E, Wang Q, Li G, Huan Q and Gao H J 2019 Chin. Phys. Lett. 36 028102 [5] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507 [6] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 [7] Wu Z B, Zhang Y Y, Li G, Du S and Gao H J 2018 Chin. Phys. B 27 077302 [8] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820 [9] Zhang L, Bampoulis P, Rudenko A N, Yao Q, van Houselt A, Poelsema B, Katsnelson M I and Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804 [10] Deng J, Ablat G, Yang Y, Fu X, Wu Q, Li P, Zhang L, Safaei A, Zhang L and Qin Z 2021 J. Phys.: Condens. Matter. 33 225001 [11] Qin Z, Pan J, Lu S, Shao Y, Wang Y, Du S, Gao H J and Cao G 2017 Adv. Mater. 29 1606046 [12] Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko A N, Lingenfelder M, Brocks G, Poelsema B, Katsnelson M I and Zandvliet H J W 2015 J. Phys.: Condens. Matter 27 443002 [13] Qin Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese) [14] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 [15] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schafer J and Claessen R 2017 Science 357 287 [16] Molle A, Goldberger J, Houssa M, Xu Y, Zhang S C and Akinwande D 2017 Nat. Mater. 16 163 [17] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [18] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L and Song B 2020 Adv. Mater. 33 1907818 [19] Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, Tian Y, Yin L J, Huang W Q, Zhang W, Wong P K J, Zhang L, Wee A T S and Qin Z 2021 ACS Nano 15 4481 [20] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese) [21] Zhang Y, Wang Y, Xi L, Qiu R, Shi X, Zhang P and Zhang W 2014 J. Chem. Phys. 140 074702 [22] Shah J, Sohail H M, Uhrberg R I G and Wang W 2020 J. Phys. Chem. Lett. 11 1609 [23] Unzelmann M, Bentmann H, Eck P, Kisslinger T, Geldiyev B, Rieger J, Moser S, Vidal R C, Kissner K, Hammer L, Schneider M A, Fauster T, Sangiovanni G, Di Sante D and Reinert F 2020 Phys. Rev. Lett. 124 176401 [24] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055 [25] Lin X, Lu J C, Shao Y, et al. 2017 Nat. Mater. 16 717 [26] Guo Q, Zhong Y, Huang M, Lu S and Yu Y 2020 Thin Solid Films 693 137709 [27] Walen H, Liu D J, Oh J, Yang H J, Kim Y and Thiel P A 2016 Chemphyschem 17 2137 [28] Nishimura T, Toki S, Sugiura H, Nakada K and Yamada A 2016 Appl. Phys. Express 9 092301 [29] Nguyen M C, Choi J H, Zhao X, Wang C Z, Zhang Z and Ho K M 2013 Phys. Rev. Lett. 111 165502 [30] Qian K, Gao L, Chen X, et al. 2020 Adv. Mater. 32 1908314 [31] Wang Y, Li L, Yao W, Song S, Sun J, Pan J, Ren X, Li C, Okunishi E and Wang Y Q 2015 Nano Lett. 15 4013 [32] Zhang S, Song Y, Li J M, Wang Z, Liu C, Wang J O, Gao L, Lu J C, Zhang Y Y, Lin X, Pan J, Du S X and Gao H J 2020 Chin. Phys. B 29 077301 [33] Liu B, Zhuang Y, Que Y, Xu C and Xiao X 2020 Chin. Phys. B 29 056801 [34] Sun H, Liang Z, Shen K, Luo M, Hu J, Huang H, Zhu Z, Li Z, Jiang Z and Song F 2018 Appl. Surf. Sci. 428 623 [35] Blöchl P E 1994 Phys. Rev. B 50 17953 [36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Shishkin M and Kresse G 2007 Phys. Rev. B 75 235102 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [40] Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382 [41] Guo Q, Zhong Y, Huang M, Lu S and Yu Y 2020 Thin Solid Films 693 137709 [42] Chen H Y, Chen L, Lin J, Tan K L and Li J 1997 Inorg. Chem. 36 1417 [43] Chen X Q, Li Z, Bai Y, Sun Q, Wang L Z and Dou S X 2015 Chem. Eur. J. 21 1055 [44] Riha S C, Johnson D C and Prieto A L 2011 J. Am. Chem. Soc. 133 1383 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|