Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116106    DOI: 10.1088/1674-1056/abfc3c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Preparation of graphene on SiC by laser-accelerated pulsed ion beams

Danqing Zhou(周丹晴)1,†, Dongyu Li(李东彧)1,2,†, Yuhan Chen(陈钰焓)1, Minjian Wu(吴旻剑)1,2, Tong Yang(杨童)1,2, Hao Cheng(程浩)1,2, Yuze Li(李昱泽)1,2, Yi Chen(陈艺)1, Yue Li(李越)1, Yixing Geng(耿易星)1,2,3, Yanying Zhao(赵研英)1,2,3,‡, Chen Lin(林晨)1,2,3,§, Xueqing Yan(颜学庆)1,2,3, and Ziqiang Zhao(赵子强)1,¶
1 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China;
2 Beijing Laser Acceleration Innovation Center, Huairou, Beijing 101400, China;
3 Institute of Guangdong Laser Plasma Technology, Guangzhou 510540, China
Abstract  Laser-accelerated ion beams (LIBs) have been increasingly applied in the field of material irradiation in recent years due to the unique properties of ultra-short beam duration, extremely high beam current, etc. Here we explore an application of using laser-accelerated ion beams to prepare graphene. The pulsed LIBs produced a great instantaneous beam current and thermal effect on the SiC samples with a shooting frequency of 1 Hz. In the experiment, we controlled the deposition dose by adjusting the number of shootings and the irradiating current by adjusting the distance between the sample and the ion source. During annealing at 1100 ℃, we found that the 190 shots ion beams allowed more carbon atoms to self-assemble into graphene than the 10 shots case. By comparing with the controlled experiment based on ion beams from a traditional ion accelerator, we found that the laser-accelerated ion beams could cause greater damage in a very short time. Significant thermal effect was induced when the irradiation distance was reduced to less than 1 cm, which could make partial SiC self-annealing to prepare graphene dots directly. The special effects of LIBs indicate their vital role to change the structure of the irradiation sample.
Keywords:  laser ion acceleration      graphene      self-annealing  
Received:  06 April 2021      Revised:  06 April 2021      Accepted manuscript online:  28 April 2021
PACS:  61.80.Jh (Ion radiation effects)  
  81.05.ue (Graphene)  
  68.65.Pq (Graphene films)  
  41.75.Jv (Laser-driven acceleration?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875077, 11975037, and 11921006) and the National Grand Instrument Project of China (Grant Nos. 2019YFF01014400 and 2019YFF01014404).
Corresponding Authors:  Chen Lin, Xueqing Yan, Ziqiang Zhao     E-mail:  lc0812@pku.edu.cn;x.yan@pku.edu.cn;zqzhao@pku.edu.cn

Cite this article: 

Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强) Preparation of graphene on SiC by laser-accelerated pulsed ion beams 2021 Chin. Phys. B 30 116106

[1] Daido H, Nishiuchi M and Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401
[2] Macchi A, Borghesi M, and Passoni M 2013 Rev. Mod. Phys. 85 751
[3] Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I, Watts I and Dangor A E 2000 Phys. Rev. Lett. 84 670
[4] Dromey B, Coughlan M, Senje L, Taylor M, Kuschel S, Villagomez-Bernabe B, Stefanuik R, Nersisyan G, Stella L, Kohanoff J and Borghesi M 2016 Nat Commun 7 10642
[5] Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E and Cobble J 2004 Phys. Rev. Lett. 92 204801
[6] Borghesi M, Campbell D H, Schiavi A, Willi O, Mackinnon A J, Hicks D, Patel P, Gizzi L A, Galimberti M and Clarke R J 2002 Laser and Particle Beams 20 269
[7] Liao G, Li Y, Zhu B, Li Y, Li F, Li M, Wang X, Zhang Z, He S, Wang W, Lu F, Zhang F, Yang L, Zhou K, Xie N, Hong W, Gu Y, Zhao Z, Zhang B and Zhang J 2016 Matter Radiat. Extremes 1 187
[8] Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T and Stephens R 2003 Phys. Rev. Lett. 91 125004
[9] Kraft S D, Richter C, Zeil K, Baumann M, Beyreuther E, Bock S, Bussmann M, Cowan T E, Dammene Y, Enghardt W and Helbig U 2010 New J. Phys. 12 085003
[10] Barberio M, Sciscio M, Skantzakis E and Antici P 2019 Adv. Eng. Mater. 21 1800777
[11] Barberio M, Sciscio M, Vallieres S, Cardelli F, Chen S N, Famulari G, Gangolf T, Revet G, Schiavi A, Senzacqua M and Antici P 2018 Nat. Commun. 9 372
[12] Barberio M, Sciscio M, Vallieres S, Veltri S, Morabito A and Antici P 2017 Sci. Rep. 7 12522
[13] Barberio M, Giusepponi S, Vallieres S, Sciscio M, Celino M and Antici P 2020 Sci. Rep 10 9570
[14] Barberio M, Vallieres S, Sciscio M, Kolhatkar G, Ruediger A and Antici P 2018 Carbon 139 531
[15] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[16] Ye R and Tour J M 2019 ACS Nano 13 10872
[17] Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q and Xie X 2016 Nat. Mater. 15 43
[18] Khan A, Islam SM, Ahmed S, Kumar RR, Habib MR, Huang K, Hu M, Yu X and Yang D 2018 Adv. Sci. 5 180050
[19] Yazdi G R, Iakimov T and Yakimova R 2016 Crystals 6 53
[20] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J and Rotenberg E 2009 Nat. Mater. 8 203
[21] Strupinski W, Grodecki K, Wysmolek A, Stepniewski R, Szkopek T, Gaskell P E, Gruneis A, Haberer D, Bozek R, Krupka J and Baranowski J M 2011 Nano Lett. 11 1786
[22] Willke P, Amani J A, Thakur S, Weikert S, Druga T, Maiti K, Hofsass H and Wenderoth M 2014 Appl. Phys. Lett. 105 111605
[23] Chen Y, Zhao Y, Han D, Fu D, Chen Y, Zhou D, Li Y, Wang X and Zhao Z 2021 Carbon 172 353
[24] Ishii J, Miyawaki Y, Tsuboi N, Ikari T and Naitoh M 2016 e-Journal of Surface Science and Nanotechnology 14 121
[25] Tongay S, Lemaitre M, Fridmann J, Hebard A F, Gila B P and Appleton B R 2012 Appl. Phys. Lett. 100 073501
[26] Geng Y X, Liao Q, Shou Y R, Zhu J G, Xu X H, Wu M J, Wang P J, Li D Y, Yang T, Hu R H, Wang D H, Zhao Y Y, Ma W J, Lu H Y, Yuan Z X, Lin C and Yan X Q 2018 Chin. Phys. Lett. 35 092901
[27] Geng Y X, Wu D, Yu W, Sheng Z M, Fritzsche S, Liao Q, Wu M J, Xu X H, Li D Y, Ma W J, Lu H Y, Zhao Y Y, He X T, Chen J E, Lin C and Yan X Q 2020 Matter Radiat. Extremes 5 064402
[28] Zhu J G, Wu M J, Liao Q, Geng Y X, Zhu K, Li C C, Xu X H, Li D Y, Shou Y R, Yang T, Wang P J, Wang D H, Wang J J, Chen J E, He X T, Zhao Y Y, Ma W J, Lu H Y, Tajima T, Lin C and Yan X Q 2019 Phys. Rev. Accel. Beams 22 061302
[29] Zhu J G, Wu M J, Zhu K, Geng Y X, Liao Q, Li D Y, Yang T, Easton M J, Li C C, Xu X H, Shou Y R, Yu J Q, Gong Z, Zhao Y Y, Wang P J, Wang D H, Tao L, Chen C E, Ma W J, Lu H Y, Tajima T, Mourou G, Lin C and Yan X Q 2020 Phys. Rev. Accel. Beams 23 121304
[30] Xu X H, Liao Q, Wu M J, Geng Y X, Li D Y, Zhu J G, Li C C, Hu R H, Shou Y R, Chen Y H, Lu H Y, Ma W J, Zhao Y Y, Zhu K, Lin C and Yan X Q 2019 Rev. Sci. Instrum. 90 033306
[31] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instr. Meth. in Phys. Res. B 268 1818
[32] Wagner F, Bedacht S, Bagnoud V, Deppert O, Geschwind S, Jaeger R, Ortner A, Tebartz A, Zielbauer B, Hoffmann D H and Roth M 2015 Phys. Plasmas 22 063110
[33] Norimatsu W and Kusunoki M 2014 Semicond. Sci. Technol. 29 064009
[34] NFerrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
[35] Malard L M, Pimenta M A, Dresselhaus G and Dresselhaus M S 2009 Physics Reports 473 51
[36] Cellini F, Lavini F, Berger C, De Heer W and Riedo E 2019 2D Mater. 6 035043
[37] Audren A, Monnet I, Leconte Y, Portier X, Thome L, Levalois M, Herlin-Boime N and Reynaud C 2008 Nucl. Instr. Meth. in Phys. Res. B 266 2806
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!