Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116107    DOI: 10.1088/1674-1056/ac0780
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix

Shulan Liu(刘淑兰) and Huijing Yang(杨会静)
School of Physical Science and Technology, Tangshan Normal University, Tangshan 063000, China
Abstract  Molecular dynamic analysis was performed on pure and doped (by Re, Ru, Co or W) Ni at 300 K using the embedded-atom-method (EAM) potentials to understand the crack formation of the doped Ni matrix in the (010)[001] orientation. When Ni was doped with Re, Ru, and W, the matrix demonstrated increased lattice trapping limits and, as a result, improved the mechanical properties. Consequently, this prevented the bond breakage at the crack tips and promoted crack healing. The average atomic and surface energy values increased when Re, Ru, and W were added. Analysis of these energy increase helped us to understand the influence these elements had on the lattice trapping limits. The fracture strength of the Ni matrix at 300 K increased because of the formation of the stronger Ni-Re, Ni-Ru, and Ni-W bonds. At the same time, doping the Ni matrix with Co did not demonstrate any strengthening effects because of the formation of Co-Ni bonds, which are weaker than the Ni-Ni bonds. Out of all dopants tested in this work, Ni doping with W showed the best results.
Keywords:  alloying elements      doping      Ni crack      lattice trapping  
Received:  19 April 2021      Revised:  25 May 2021      Accepted manuscript online:  03 June 2021
PACS:  61.82.Bg (Metals and alloys)  
  62.20.mm (Fracture)  
  62.20.mt (Cracks)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604237), the Natural Science Foundation of Hebei Province of China (Grant Nos. E2019105073 and E2015105079), the Scientific Research Foundation of Tangshan Normal University of China (Grant Nos. 2016A06 and 2020C03), and the Department of Education of Guangdong Province, China (Grant No. 2019GKTSCX128).
Corresponding Authors:  Huijing Yang     E-mail:  yanghj619@126.com

Cite this article: 

Shulan Liu(刘淑兰) and Huijing Yang(杨会静) Molecular dynamics simulations of dopant effectson lattice trapping of cracks in Ni matrix 2021 Chin. Phys. B 30 116107

[1] Schafrik R and Sprague R 2004 Gas Turbine Materials Adv. Mater. Process. 162 29
[2] Reed R C 2006 The Superalloys (Cambridge University Press) p. 102
[3] Pollock T M and Tin S 2006 J. Propul. Power 22 361
[4] Liu Z G, Wang C Y and Yu T 2014 Comput. Mater. Sci. 83 196
[5] Liu F H and Wang C Y 2017 Chin. Phys. B 26 076104
[6] Qi Y, Wu W P, Chen Y B and Chen M X 2015 RSC Adv. 5 65942
[7] Wang D W, Wang C Y and Yu T 2019 R. Soc. open sci. 6 190441
[8] Thomson R, Hsieh C and Rana V 1971 J. Appl. Phys. 42 3154
[9] Zhu T, Li J and Yip S 2006 Proc. R. Soc. A 462 1741
[10] Sinclair J E 1975 Philos. Mag. 3 647
[11] Schoeck G and Pichl W 1990 Phys. Status Solidi A 118 109
[12] Zhang S L, Zhu T and Belytschko T 2007 Phys. Rev. B 76 094114
[13] Liu S L, Wang C Y, Yu T and Liu Z G 2015 Comput. Mater. Sci. 97 102
[14] Pérez R and Gumbsch P 2000 Phys. Rev. Lett. 84 5347
[15] Liu S L, Wang C Y and Yu T 2015 Comput. Mater. Sci 110 261
[16] Kohlhoff S, Gumbsch P and Fischmei H F 1991 Philos. Mag. A 64 851
[17] Spence J C H, Huang Y M and Sankey O 1993 Acta Metall. Mater. 41 2815
[18] Yue E L, Yu T, Wang Y J and Wang C Y 2021 Intermetallics 132 107133
[19] Wang Y J and Wang C Y 2009 Philos. Mag. 89 2935
[20] Wang Y J and Wang C Y 2009 Appl. Phys. Lett. 94 261909
[21] Wang Y J and Wang C Y 2009 Scr. Mater. 61 197
[22] Zhu C X and Yu T 2020 Chin. Phys. B. 29 076102
[23] Reed R, Tao T and Warnken N 2009 Acta Mater. 57 5898
[24] Fleischmann E, Miller M K, Affeldt E and Glatzel U 2015 Acta Mater. 87 350
[25] Wang D W, Wang C Y, Yu T and Liu W Q 2020 Chin. Phys. B 29 043103
[26] Ai C, Liu L, Zhang J, Guo M, Li Z, Huang T, Zhou J, Li S, Gong S and Liu G 2018 J. Alloys Compd. 754 85
[27] Heckl A, Neumeier S, Cenanovic S, Göken M and Singer R F 2011 Acta Mater. 59 6563
[28] Gong X F, Yang G X, Fu Y H, Xie Y Q, Zhuang J and Ning X J 2009 Comput. Mater. Sci. 47 320
[29] Liu S L, Wang C Y and T Yu 2015 RSC Adv. 5 52473
[30] Du J P, Wang C Y and Yu T 2013 Modell. Simul. Mater. Sci. Eng. 21 015007
[31] Du J P, Wang C Y and Yu T 2014 Chin. Phys. B 23 033401
[32] Fan Q N, Wang C Y, Yu T and Du J P 2015 Physica B 456 283
[33] Yue E L, Yu T, Wang C Y and Du J P 2020 Prog. Nat. Sci. Mater. Int. 30 539
[34] Liu Z G, Wang C Y and Yu T 2013 Modelling Simul. Mater. Sci. Eng. 21 045009
[35] Zhao S J 2021 Chin. Phys. B 30 056111
[36] Yu T, Xie H X and Wang C Y 2012 Chin. Phys. B 21 026104
[37] Wu R H, Yin Q, Wang J P, Mao Q Z, Zhang X and Wen Z X 2021 J. Alloys Compd. 862 158643
[38] Rahman M H, Mitra S, Motalab M and Bose P 2020 RSC Adv. 10 31318
[39] Ye Y J, Qin L, Li J, Liu L and Wu L K 2021 Chin. Phys. B 30 026801
[40] Reed R C, Yeh A C, Tin S, Babu S S and Miller M K 2004 Scr. Mater. 51 327
[41] Volek A, Pyczak F, Singer R F and Mughrabi H 2005 Scr. Mater. 52 141
[42] Sih G C and Liebowitz H 1968 Mathematical Theories of Brittle Fracture, Fracture: an Advanced Treatise (Academic Press) p. 69
[43] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford University Press) p. 83
[44] Rifkin J XMD (Center for Simulation, University of Connecticut)
[45] Grimvall G 1999 Thermophysical Properties of Materials (Amsterdam: North-Holland)
[46] Mishin Y 2004 Acta Mater. 52 1451
[47] Simmons G and Wang H 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press)
[48] Gumbsch P and Cannon R M 2000 MRS Bull 25 15
[49] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[50] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[51] Griffith A A 1921 Phil. Trans. R. Soc. Lond. A 221 163
[52] Gordon P A and Neeraj T 2009 Acta Mater. 57 3091
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[5] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[14] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[15] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
No Suggested Reading articles found!