Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104209    DOI: 10.1088/1674-1056/abfbda
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection

Rong Ye(叶荣)1,†, Huining Dong(董会宁)1, Xianyun Wu(吴显云)1, and Xiang Gao(高翔)2
1 College of Physics and Engineering, Chengdu Normal University, Chengdu 611130, China;
2 College of Science, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Combined with the optical beam deflection, a novel approach of phase matched broadband scanning optical parametric chirped pulse amplification (OPCPA) was proposed. For this scheme, there was no superfluous operations to the chirped signal pulse which propagated in a changeless direction straightforward, but the pump beam were deflected in space with time by passing through a KTN crystal, which was applied with varied driving voltage. The theories of phase matching of each chirped signal frequency based on pump beam deflection was analyzed detailedly. And the type-I amplification of chirped signal with 800 nm central wavelength and 20 nm bandwidth pumped by 532 nm in BBO crystal was simulated as a case in point. The simulation results showed that the spectral distribution of chirped signal pulse was almost the same as the initial form, i.e., there was nearly no narrowing on the amplified spectrum by using of the scanning OPCPA based on pump beam deflection. In addition, the simulations demonstrated that it was worth minimizing the voltage deviation applied to KTN crystal as much as possible for the sake of better waveform, larger bandwidth and higher conversion efficiency of amplified signal pulse in the proposed scanning OPCPA.
Keywords:  optical parametric chirped pulse amplification      optical beam deflection      phase matching      scanning      KTN crystal  
Received:  04 February 2021      Revised:  22 April 2021      Accepted manuscript online:  27 April 2021
PACS:  42.65.-k (Nonlinear optics)  
  42.70.Mp (Nonlinear optical crystals)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.79.Ls (Scanners, image intensifiers, and image converters)  
Fund: Project supported by Science and Technology Innovation Seedling Project of Sichuan Province, China (Grant No. 2018100) and Major Project of CDNU (Grant No. CS18ZDZ0511).
Corresponding Authors:  Rong Ye     E-mail:  yj1987211@163.com

Cite this article: 

Rong Ye(叶荣), Huining Dong(董会宁), Xianyun Wu(吴显云), and Xiang Gao(高翔) Phase matched scanning optical parametric chirped pulse amplification based on pump beam deflection 2021 Chin. Phys. B 30 104209

[1] Danson C N, Haefner C, Bromage J, Butcher T, Chanteloup J F, Chowdhury E A, Galvanauskas A, Gizzi L A, Hein J, Hillier D I, Hopps N W, Katto Y, Khazanov E A, KODAMA r, Korn G, Li R X, Li Y T, Limpert J, Ma J G, Nam C H, Neely D, Papadopoulos D, Penman P R, Qian L J, Rocca J J, Shaykin A A, Siders C W, Spindloe C, Szatmari S, Trines R M G M, Zhu J Q, Zhu P and Zuegel J 2019 High Power Laser Sci. Eng. 7 1
[2] Xu L, Yu L H, Chu Y X, Gan Z B, Liang X Y, Li R X and Xu Z Z 2015 Chin. Phys. B 24 018704
[3] Dubietis A, Jonušauskas G and Piskarskas A 1992 Opt. Commun. 88 437
[4] Bromage J, Bahk S W, Begishev I A, Dorrer C, Guardalben M J, Hoffman B N, Oliver J B, Roides R G, Schiesser E M, Shoup M J Ⅲ, Spilatro M, Webb B, Weiner D and Zuegel J D 2019 High Power Laser Sci. Eng. 7 e4-1
[5] Windeler M K R, Mecseki K, Miahahri A, Robinson J S, Fraser J M, Fry A R and Tavella F 2019 Opt. Lett. 44 4287
[6] Yu L H, Liang X Y, Xu L, Li W Q, Peng C, Hu Z G, Wang C, Lu X M, Chu Y X, Gan Z B, Liu X D, Liu Y Q, Wang X L, Lu H H, Yin D J, Leng Y X, Li R X and Xu Z Z 2015 Opt. Lett. 40 3412
[7] Zou X, Li W K, Liang H K, Liu K, Qu S Z, Wang Q J and Zhang Y 2019 Opt. Lett. 44 2791
[8] Zhou B J, Ma J G, Wang J, Tang D L, Xie G Q, Yuan P, Zhu H Y and Qian L J 2017 Phy. Rev. A 95 033841
[9] Wang C, Leng Y X, Liang X Y, Zhao B Z and Xu Z Z 2005 Opt. Commun. 246 323
[10] Mayer B W, Phillips C R, Gallmann L and Keller U 2014 Opt. Express 22 20798
[11] Bigler N, Pupeikis J, Hrisafov S, Gallmann L, Phillips C R and Keller U 2018 Opt. Express 26 6036
[12] Gong D W, Hao T, Tan L Y and Zhou Z X 2011 Appl. Opt. 50 28
[13] Gong D W, Liang Y G, Ou W J, Wang J J, Wu Y, Liu B and Zhou Z X 2016 Materials Research Bulletin 75 7
[14] Zhu W B, Chao J H, Chen C J, Yin S Z and Hoffman R C 2016 Scientific Reports 6 33143
[15] Chao J H, Zhu W B, Wang C, Yao J, Yin S and Hoffman R C 2015 Proc. SPIE 9586 95860T-1
[16] Nakamura K, Miyazu J, Sasaura M and Fujiura K 2006 Appl. Phy. Lett. 89 131115
[17] Grace E J, Tsangarts C L and New G H C 2006 Opt. Commun. 261 225
[18] Wang A B, Liu C B and Tian Y 2015 Measurement & Control Technology 34 119 (in Chinese)
[19] Aleksey B R 2019 Instruments 3 1
[20] Zhang Y Y, Li G Y, Fan W, Wang X C, Jiang Y E and Shi Z D 2016 Laser & Optoelectronics Progress 53 081405
[21] Chen L Z, Wen S C, Wang Y W, Zhao C J, Qian L J and Fan D Y 2010 IEEE Journal of Quantum Electronics 46 1354
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[4] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[9] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[13] Characterization of a nano line width reference material based on metrological scanning electron microscope
Fang Wang(王芳), Yushu Shi(施玉书), Wei Li(李伟), Xiao Deng(邓晓), Xinbin Cheng(程鑫彬), Shu Zhang(张树), and Xixi Yu(余茜茜). Chin. Phys. B, 2022, 31(5): 050601.
[14] Non-invasive and low-artifact in vivo brain imaging by using a scanning acoustic-photoacoustic dual mode microscopy
Wentian Chen(陈文天), Chao Tao(陶超), Zizhong Hu(胡仔仲), Songtao Yuan(袁松涛), Qinghuai Liu(刘庆淮), and Xiaojun Liu(刘晓峻). Chin. Phys. B, 2022, 31(4): 044304.
[15] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
No Suggested Reading articles found!