|
|
Large-area fabrication: The next target of perovskite light-emitting diodes |
Hang Su(苏杭)1, Kun Zhu(朱坤)1, Jing Qin(钦敬)1, Mengyao Li(李梦瑶)1, Yulin Zuo(左郁琳)1, Yunzheng Wang(王允正)1, Yinggang Wu(吴迎港)1, Jiawei Cao(曹佳维)2, and Guolong Li(李国龙)1,† |
1 Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan 750000, China; 2 Advanced Computer Science, University of Leeds, Leeds LS2 9JT, UK |
|
|
Abstract Perovskite materials show exciting potential for light-emitting diodes (LEDs) owing to their intrinsically high photoluminescence efficiency and color purity. The research focusing on perovskite light-emitting diodes (PeLEDs) has experienced an exponential growth in the past six years. The maximum external quantum efficiency of red, green, and blue PeLEDs has surpassed 20%, 20%, and 10%, respectively. Nevertheless, the current PeLEDs are still in the laboratory stage, and the key for further development of PeLEDs is large-area fabrication. In this paper, we briefly discuss the similarities and differences between manufacturing high-quality and large-area PeLEDs and perovskite solar cells. Especially, the general technologies for fabricating large-area perovskite films are also introduced. The effect of charge transport layers and electrodes on large-area devices are discussed as well. Most importantly, we summarize the advances of large-area (active area ≥ 30 mm2) PeLEDs reported since 2017, and describe the methods for optimizing large-area PeLEDs reported in the literature. Finally, the development perspective of PeLEDs is presented for the goal of highly efficient and large-area PeLED fabrication. It is of great significance for the application of PeLEDs in future display and lighting.
|
Received: 06 April 2021
Revised: 06 May 2021
Accepted manuscript online: 27 May 2021
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
81.07.Pr
|
(Organic-inorganic hybrid nanostructures)
|
|
81.10.Dn
|
(Growth from solutions)
|
|
Fund: Project supported by the Ningxia Key Project of Research and Development Plan (Grant No. 2020BDE03013). |
Corresponding Authors:
Guolong Li
E-mail: liglo@163.com
|
Cite this article:
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙) Large-area fabrication: The next target of perovskite light-emitting diodes 2021 Chin. Phys. B 30 088502
|
[1] Li Z C, Chen Z M, Zou G R X, Yip H L and Cao Y 2019 Acta Phys. Sin. 68 158505 (in Chinese) [2] Richter J M, Abdi-Jalebi M, Sadhanala A, Tabachnyk M, Rivett J P H, Pazos-Outón L M, Godel K C, Price M, Deschler F and Friend R H 2016 Nat. Commun. 7 13941 [3] Su H, Chen J, Qin J, Zhu K and Li G L 2020 Appl. Opt. 59 7975 [4] Wang N, Cheng L and Ge R, et al. 2016 Nat. Photon. 10 699 [5] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H and Sargent E H 2016 Nat. Nanotechnol. 11 872 [6] Sutherland B R and Sargent E H 2016 Nat. Photon. 10 295 [7] Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391 [8] Liu B, Wang L, Gu H, Sun H and Demir H V 2018 Adv. Opt. Mater. 6 1800220 [9] Wu J L, Dou Y J, Zhang J F, Wang H R and Yang X D 2020 Acta Phys. Sin. 69 018101 (in Chinese) [10] Cho H, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S and Lee T W 2017 Adv. Mater. 29 1700579 [11] Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838 [12] Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926 [13] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B and Dong Y 2015 ACS Nano 9 4533 [14] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R. H 2014 Nat. Nanotechnol. 9 687 [15] Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y and Huang J 2019 Nat. Commun. 10 5633 [16] Lin K, Xing J, Quan L N, Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z H 2018 Nature 562 245 [17] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S and Kido J 2018 Nat. Photon. 12 681 [18] Xu W, Hu Q, Bai S, et al. 2019 Nat. Photon. 13 418 [19] Qu Z H, Chu Z M, Zhang X W and You J B 2019 Acta Phys. Sin. 68 158504 (in Chinese) [20] Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H and You J B 2017 Nat. Commun. 8 15640 [21] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S and Sun B 2017 Adv. Funct. Mater. 27 1700338 [22] Chen A, Wang P, Lin T, Liu R, Liu B, Li Q J and Liu B B 2021 Chin. Phys. B 30 048506 [23] Li J, Bade S G R, Shan X and Yu Z 2015 Adv. Mater. 27 5196 [24] Zhao C, Zhang D and Qin C 2020 CCS Chem. 2 859 [25] Cho H, Kim Y H, Wolf C, Lee H D and Lee T W 2018 Adv. Mater. 30 e1704587 [26] Lu M, Zhang Y, Wang S, Guo J, Yu W W and Rogach A L 2019 Adv. Funct. Mater. 29 1902008 [27] Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X and You J 2017 Adv. Mater. 29 1703852 [28] Whitaker J B, Kim D H, Larson B W, Zhang F, Berry J J, Hest M F A M and Zhu K 2018 Sustainable Energy Fuels 2 2442 [29] Zhang Z Y, Xu L and Qi J J 2021 Chin. Phys. B 30 038801 [30] Chen Y, Zhang L, Zhang Y, Gao H and Yan H 2018 RSC Adv. 8 10489 [31] Zhao Y, Ma F, Gao F, Yin Z, Zhang X and You J 2020 Photon. Res. 8 A1 [32] Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow E K L, Sum T C and Huang W 2017 Nat. Commun. 8 14558 [33] Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z and Huang J 2020 Joule 4 2661 [34] Liu Z, He T, Wang H, Jain S M, Liu K, Yang J, Zhang N, Liu H and Yuan M 2018 J. Power Sources 401 303 [35] Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T and Tan Z 2018 Adv. Funct. Mater. 28 1804187 [36] McMeekin D P, Wang Z, Rehman W, Pulvirenti F, Patel J B, Noel N K, Johnston M B, Marder S R, Herz L M and Snaith H J 2017 Adv. Mater. 29 1607039 [37] Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S and Lee T W 2019 Adv. Funct. Mater. 29 1902017 [38] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Adv. Mater. 26 6503 [39] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S and Sun B 2017 Adv. Funct. Mater. 27 1700338 [40] Chen P, Xiong Z, Wu X, Shao M, Meng Y, Xiong Z H and Gao C 2017 J. Phys. Chem. Lett. 8 3961 [41] Jeon S, Zhao L, Jung Y J, Kim J W, Kim S Y, Kang H, Jeong J H, Rand B P and Lee J H 2019 Small 15 1900135 [42] Cheng G, Liu Y, Chen T, Chen W, Fang Z, Zhang J, Ding L, Li X, Shi T and Xiao Z 2020 ACS Appl. Mater. Interfaces 12 18084 [43] Cheng L, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S and Tang J X 2019 Adv. Opt. Mater. 7 1801534 [44] Zhao L, Lee K M, Roh K, Khan S U Z and Rand B P 2019 Adv. Mater. 31 1805836 [45] Chih Y K, Wang J C, Yang R T, Liu C C, Chang Y C, Fu Y S, Lai W C, Chen P, Wen T C, Huang Y C, Tsao C S and Guo T F 2016 Adv. Mater. 28 8687 [46] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H and Lee T W 2015 Science 350 1222 [47] Ban M, Zou Y, Rivett J P H, Yang Y, Thomas T H, Tan Y, Song T, Gao X, Credington D, Deschler F, Sirringhaus H and Sun B 2018 Nat. Commun. 9 3892 [48] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T and Tang J X 2019 Adv. Mater. 31 1901517 [49] Leyden M R, Meng L, Jiang Y, Ono L K, Qiu L, Juarez-Perez E J, Qin C, Adachi C and Qi Y 2017 J. Phys. Chem. Lett. 8 3193 [50] Du P, Li J, Wang L, Liu J, Li S, Liu N, Li Y, Zhang M, Gao L, Ma Y and Tang J 2019 ACS Appl. Mater. Interfaces 11 47083 [51] Jia K, Song L, Hu Y, Guo X, Liu X, Geng C, Xu S, Fan R, Huang L, Luan N and Bi W 2020 ACS Appl. Mater. Interfaces 12 15928 [52] Derue L, Olivier S, Tondelier D, Maindron T, Geffroy B and Ishow E 2016 ACS Appl. Mater. Interfaces 8 16207 [53] Choi K J, Lee J Y, Park J and Seo Y S 2015 Org. Electron. 26 66 [54] Prakasam V, Tordera D, Giacomo F D, Abbel R, Langen A, Gelinck G and Bolink H J 2019 J. Mater. Chem. C 7 3795 [55] Bade S G R, Li J, Shan X, Ling Y, Tian Y, Dilbeck T, Besara T, Geske T, Gao H, Ma B, Hanson K, Siegrist T, Xu C and Yu Z 2016 ACS Nano 10 1795 [56] Park M, Cho W, Lee G, Hong S C, Kim M, Yoon J, Ahn N and Choi M 2019 Small 15 1804005 [57] Karunakaran S K, Arumugam G M, Yang W, Ge S, Khan S N, Lin X, Yang G 2019 J. Mater. Chem. A 7 13873 [58] Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H and Huang W 2015 Adv. Mater. 27 2311 [59] Xu Y, Zhang Y T, Kou Z Q, Cheng S and Bu S L 2016 Chin. Phys. Lett. 33 048501 [60] Kim D B, Lee S, Jang C H, Park J H, Lee A and Song M H 2020 Adv. Mater. Interfaces 7 1902158 [61] Acik M, Lee G, Mattevi C, Chhowalla M, Cho K and Chabal Y J 2010 Nat. Mater. 9 840 [62] Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S and Lee T W 2017 Adv. Mater. 29 1605587 [63] Zhang Q, Yu H, Liu Z, Lu Y, Ye D, Qian J, Wu Y, Gu W, Ma B, Zhang L, Duan Y, Liu L, Cao K, Chen S and Huang W 2019 RSC Adv. 9 20931 [64] Park J W, Shin D C and Park S H 2011 Semicond. Sci. Technol. 26 034002 [65] Le Q V, Jang H W and Kim S Y 2018 Small Methods 2 1700419 [66] Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R, Jang J and Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920 [67] Kumar S, Jagielski J, Kallikounis N, Kim Y H, Wolf C, Jenny F, Tian T, Hofer C J, Chiu Y C, Stark W J, Lee T W and Shih C J 2017 Nano Lett. 17 5277 [68] Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W and Wang J 2018 Adv. Opt. Mater. 7 1801575 [69] Kumar S, Jagielski J, Tian T, Kallikounis N, Lee W C and Shih C J 2019 ACS Energy Lett. 4 118 [70] Yuan S, Wang Z K, Zhuo M P, Tian Q S, Jin Y and Liao L S 2018 ACS Nano 12 9541 [71] Lau Y S, Lan Z, Li N and Zhu F 2020 ACS Appl. Electron. Mater. 2 1113 [72] Liao H C, Guo P, Hsu C P, Lin M, Wang B, Zeng L, Huang W, Soe C M M, Su WF, Bedzyk M J, Wasielewski M R, Facchetti A, Chang R P H, Kanatzidis M G and Marks T J 2017 Adv. Energy Mater. 7 1601660 [73] Wang H, Gong X, Zhao D, Zhao Y B, Wang S, Zhang J, Kong L, Wei B, Quintero-Bermudez R, Voznyy O, Shang Y, Ning Z, Yan Y, Sargent E H and Yang X 2020 Joule 4 1977 [74] Zhao X and Tan Z K 2020 Nat. Photon. 14 215 [75] Cao Y, Wang N, Tian H, et al. 2018 Nature 562 249 [76] Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L and Yang X 2019 Nat. Commun. 10 1 [77] Zhang L, Yuan F, Xi J, Jiao B, Dong H, Li J and Wu Z 2020 Adv. Funct. Mater. 30 2001834 [78] Kumawat N K, Liu X K, Kabra D and Gao F 2019 Nanoscale 11 2109 [79] Duan C C, Cheng L, Yao Y and Zhu L 2019 Acta Phys. Sin. 68 158503 (in Chinese) [80] Pal J, Manna S, Monda A, Das S, Adarsh K V and Nag A 2017 Angew. Chem., Int. Ed. 129 14375 [81] Volonakis G, Haghighirad A A, Milot R L, Sio W H, Filip M R, Wenger B, Johnston M B, Herz L M, Snaith H J and Giustino F 2017 J. Phys. Chem. Lett. 8 772 [82] Yuan F, Xi J, Dong H, Xi K, Zhang W, Ran C, Jiao B, Hou X, Jen K Y and Wu Z 2018 Physica Status Solidi RRL 12 1800090 [83] Zhang X, Wang C, Zhang Y, Zhang X, Wang S, Lu M, Cui H, Kershaw S V, Yu W W and Rogach A L 2019 ACS Energy Lett. 4 242 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|