Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088502    DOI: 10.1088/1674-1056/ac05a4
REVIEW Prev   Next  

Large-area fabrication: The next target of perovskite light-emitting diodes

Hang Su(苏杭)1, Kun Zhu(朱坤)1, Jing Qin(钦敬)1, Mengyao Li(李梦瑶)1, Yulin Zuo(左郁琳)1, Yunzheng Wang(王允正)1, Yinggang Wu(吴迎港)1, Jiawei Cao(曹佳维)2, and Guolong Li(李国龙)1,†
1 Key Laboratory of Photovoltaic Materials, Ningxia University, Yinchuan 750000, China;
2 Advanced Computer Science, University of Leeds, Leeds LS2 9JT, UK
Abstract  Perovskite materials show exciting potential for light-emitting diodes (LEDs) owing to their intrinsically high photoluminescence efficiency and color purity. The research focusing on perovskite light-emitting diodes (PeLEDs) has experienced an exponential growth in the past six years. The maximum external quantum efficiency of red, green, and blue PeLEDs has surpassed 20%, 20%, and 10%, respectively. Nevertheless, the current PeLEDs are still in the laboratory stage, and the key for further development of PeLEDs is large-area fabrication. In this paper, we briefly discuss the similarities and differences between manufacturing high-quality and large-area PeLEDs and perovskite solar cells. Especially, the general technologies for fabricating large-area perovskite films are also introduced. The effect of charge transport layers and electrodes on large-area devices are discussed as well. Most importantly, we summarize the advances of large-area (active area ≥ 30 mm2) PeLEDs reported since 2017, and describe the methods for optimizing large-area PeLEDs reported in the literature. Finally, the development perspective of PeLEDs is presented for the goal of highly efficient and large-area PeLED fabrication. It is of great significance for the application of PeLEDs in future display and lighting.
Keywords:  perovskite light-emitting diodes      large-area fabrication      film optimization      manufacture technologies  
Received:  06 April 2021      Revised:  06 May 2021      Accepted manuscript online:  27 May 2021
PACS:  85.60.Jb (Light-emitting devices)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
  81.10.Dn (Growth from solutions)  
Fund: Project supported by the Ningxia Key Project of Research and Development Plan (Grant No. 2020BDE03013).
Corresponding Authors:  Guolong Li     E-mail:  liglo@163.com

Cite this article: 

Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙) Large-area fabrication: The next target of perovskite light-emitting diodes 2021 Chin. Phys. B 30 088502

[1] Li Z C, Chen Z M, Zou G R X, Yip H L and Cao Y 2019 Acta Phys. Sin. 68 158505 (in Chinese)
[2] Richter J M, Abdi-Jalebi M, Sadhanala A, Tabachnyk M, Rivett J P H, Pazos-Outón L M, Godel K C, Price M, Deschler F and Friend R H 2016 Nat. Commun. 7 13941
[3] Su H, Chen J, Qin J, Zhu K and Li G L 2020 Appl. Opt. 59 7975
[4] Wang N, Cheng L and Ge R, et al. 2016 Nat. Photon. 10 699
[5] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H and Sargent E H 2016 Nat. Nanotechnol. 11 872
[6] Sutherland B R and Sargent E H 2016 Nat. Photon. 10 295
[7] Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391
[8] Liu B, Wang L, Gu H, Sun H and Demir H V 2018 Adv. Opt. Mater. 6 1800220
[9] Wu J L, Dou Y J, Zhang J F, Wang H R and Yang X D 2020 Acta Phys. Sin. 69 018101 (in Chinese)
[10] Cho H, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S and Lee T W 2017 Adv. Mater. 29 1700579
[11] Yettapu G R, Talukdar D, Sarkar S, Swarnkar A, Nag A, Ghosh P and Mandal P 2016 Nano Lett. 16 4838
[12] Yin W J, Yang J H, Kang J, Yan Y and Wei S H 2015 J. Mater. Chem. A 3 8926
[13] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B and Dong Y 2015 ACS Nano 9 4533
[14] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R. H 2014 Nat. Nanotechnol. 9 687
[15] Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y and Huang J 2019 Nat. Commun. 10 5633
[16] Lin K, Xing J, Quan L N, Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z H 2018 Nature 562 245
[17] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S and Kido J 2018 Nat. Photon. 12 681
[18] Xu W, Hu Q, Bai S, et al. 2019 Nat. Photon. 13 418
[19] Qu Z H, Chu Z M, Zhang X W and You J B 2019 Acta Phys. Sin. 68 158504 (in Chinese)
[20] Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H and You J B 2017 Nat. Commun. 8 15640
[21] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S and Sun B 2017 Adv. Funct. Mater. 27 1700338
[22] Chen A, Wang P, Lin T, Liu R, Liu B, Li Q J and Liu B B 2021 Chin. Phys. B 30 048506
[23] Li J, Bade S G R, Shan X and Yu Z 2015 Adv. Mater. 27 5196
[24] Zhao C, Zhang D and Qin C 2020 CCS Chem. 2 859
[25] Cho H, Kim Y H, Wolf C, Lee H D and Lee T W 2018 Adv. Mater. 30 e1704587
[26] Lu M, Zhang Y, Wang S, Guo J, Yu W W and Rogach A L 2019 Adv. Funct. Mater. 29 1902008
[27] Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X and You J 2017 Adv. Mater. 29 1703852
[28] Whitaker J B, Kim D H, Larson B W, Zhang F, Berry J J, Hest M F A M and Zhu K 2018 Sustainable Energy Fuels 2 2442
[29] Zhang Z Y, Xu L and Qi J J 2021 Chin. Phys. B 30 038801
[30] Chen Y, Zhang L, Zhang Y, Gao H and Yan H 2018 RSC Adv. 8 10489
[31] Zhao Y, Ma F, Gao F, Yin Z, Zhang X and You J 2020 Photon. Res. 8 A1
[32] Xing G, Wu B, Wu X, Li M, Du B, Wei Q, Guo J, Yeow E K L, Sum T C and Huang W 2017 Nat. Commun. 8 14558
[33] Chen S, Liu Y, Xiao X, Yu Z, Deng Y, Dai X, Ni Z and Huang J 2020 Joule 4 2661
[34] Liu Z, He T, Wang H, Jain S M, Liu K, Yang J, Zhang N, Liu H and Yuan M 2018 J. Power Sources 401 303
[35] Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T and Tan Z 2018 Adv. Funct. Mater. 28 1804187
[36] McMeekin D P, Wang Z, Rehman W, Pulvirenti F, Patel J B, Noel N K, Johnston M B, Marder S R, Herz L M and Snaith H J 2017 Adv. Mater. 29 1607039
[37] Park M H, Park J, Lee J, So H S, Kim H, Jeong S H, Han T H, Wolf C, Lee H, Yoo S and Lee T W 2019 Adv. Funct. Mater. 29 1902017
[38] Xiao Z, Dong Q, Bi C, Shao Y, Yuan Y and Huang J 2014 Adv. Mater. 26 6503
[39] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S and Sun B 2017 Adv. Funct. Mater. 27 1700338
[40] Chen P, Xiong Z, Wu X, Shao M, Meng Y, Xiong Z H and Gao C 2017 J. Phys. Chem. Lett. 8 3961
[41] Jeon S, Zhao L, Jung Y J, Kim J W, Kim S Y, Kang H, Jeong J H, Rand B P and Lee J H 2019 Small 15 1900135
[42] Cheng G, Liu Y, Chen T, Chen W, Fang Z, Zhang J, Ding L, Li X, Shi T and Xiao Z 2020 ACS Appl. Mater. Interfaces 12 18084
[43] Cheng L, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S and Tang J X 2019 Adv. Opt. Mater. 7 1801534
[44] Zhao L, Lee K M, Roh K, Khan S U Z and Rand B P 2019 Adv. Mater. 31 1805836
[45] Chih Y K, Wang J C, Yang R T, Liu C C, Chang Y C, Fu Y S, Lai W C, Chen P, Wen T C, Huang Y C, Tsao C S and Guo T F 2016 Adv. Mater. 28 8687
[46] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H and Lee T W 2015 Science 350 1222
[47] Ban M, Zou Y, Rivett J P H, Yang Y, Thomas T H, Tan Y, Song T, Gao X, Credington D, Deschler F, Sirringhaus H and Sun B 2018 Nat. Commun. 9 3892
[48] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T and Tang J X 2019 Adv. Mater. 31 1901517
[49] Leyden M R, Meng L, Jiang Y, Ono L K, Qiu L, Juarez-Perez E J, Qin C, Adachi C and Qi Y 2017 J. Phys. Chem. Lett. 8 3193
[50] Du P, Li J, Wang L, Liu J, Li S, Liu N, Li Y, Zhang M, Gao L, Ma Y and Tang J 2019 ACS Appl. Mater. Interfaces 11 47083
[51] Jia K, Song L, Hu Y, Guo X, Liu X, Geng C, Xu S, Fan R, Huang L, Luan N and Bi W 2020 ACS Appl. Mater. Interfaces 12 15928
[52] Derue L, Olivier S, Tondelier D, Maindron T, Geffroy B and Ishow E 2016 ACS Appl. Mater. Interfaces 8 16207
[53] Choi K J, Lee J Y, Park J and Seo Y S 2015 Org. Electron. 26 66
[54] Prakasam V, Tordera D, Giacomo F D, Abbel R, Langen A, Gelinck G and Bolink H J 2019 J. Mater. Chem. C 7 3795
[55] Bade S G R, Li J, Shan X, Ling Y, Tian Y, Dilbeck T, Besara T, Geske T, Gao H, Ma B, Hanson K, Siegrist T, Xu C and Yu Z 2016 ACS Nano 10 1795
[56] Park M, Cho W, Lee G, Hong S C, Kim M, Yoon J, Ahn N and Choi M 2019 Small 15 1804005
[57] Karunakaran S K, Arumugam G M, Yang W, Ge S, Khan S N, Lin X, Yang G 2019 J. Mater. Chem. A 7 13873
[58] Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H and Huang W 2015 Adv. Mater. 27 2311
[59] Xu Y, Zhang Y T, Kou Z Q, Cheng S and Bu S L 2016 Chin. Phys. Lett. 33 048501
[60] Kim D B, Lee S, Jang C H, Park J H, Lee A and Song M H 2020 Adv. Mater. Interfaces 7 1902158
[61] Acik M, Lee G, Mattevi C, Chhowalla M, Cho K and Chabal Y J 2010 Nat. Mater. 9 840
[62] Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S and Lee T W 2017 Adv. Mater. 29 1605587
[63] Zhang Q, Yu H, Liu Z, Lu Y, Ye D, Qian J, Wu Y, Gu W, Ma B, Zhang L, Duan Y, Liu L, Cao K, Chen S and Huang W 2019 RSC Adv. 9 20931
[64] Park J W, Shin D C and Park S H 2011 Semicond. Sci. Technol. 26 034002
[65] Le Q V, Jang H W and Kim S Y 2018 Small Methods 2 1700419
[66] Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R, Jang J and Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920
[67] Kumar S, Jagielski J, Kallikounis N, Kim Y H, Wolf C, Jenny F, Tian T, Hofer C J, Chiu Y C, Stark W J, Lee T W and Shih C J 2017 Nano Lett. 17 5277
[68] Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W and Wang J 2018 Adv. Opt. Mater. 7 1801575
[69] Kumar S, Jagielski J, Tian T, Kallikounis N, Lee W C and Shih C J 2019 ACS Energy Lett. 4 118
[70] Yuan S, Wang Z K, Zhuo M P, Tian Q S, Jin Y and Liao L S 2018 ACS Nano 12 9541
[71] Lau Y S, Lan Z, Li N and Zhu F 2020 ACS Appl. Electron. Mater. 2 1113
[72] Liao H C, Guo P, Hsu C P, Lin M, Wang B, Zeng L, Huang W, Soe C M M, Su WF, Bedzyk M J, Wasielewski M R, Facchetti A, Chang R P H, Kanatzidis M G and Marks T J 2017 Adv. Energy Mater. 7 1601660
[73] Wang H, Gong X, Zhao D, Zhao Y B, Wang S, Zhang J, Kong L, Wei B, Quintero-Bermudez R, Voznyy O, Shang Y, Ning Z, Yan Y, Sargent E H and Yang X 2020 Joule 4 1977
[74] Zhao X and Tan Z K 2020 Nat. Photon. 14 215
[75] Cao Y, Wang N, Tian H, et al. 2018 Nature 562 249
[76] Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L and Yang X 2019 Nat. Commun. 10 1
[77] Zhang L, Yuan F, Xi J, Jiao B, Dong H, Li J and Wu Z 2020 Adv. Funct. Mater. 30 2001834
[78] Kumawat N K, Liu X K, Kabra D and Gao F 2019 Nanoscale 11 2109
[79] Duan C C, Cheng L, Yao Y and Zhu L 2019 Acta Phys. Sin. 68 158503 (in Chinese)
[80] Pal J, Manna S, Monda A, Das S, Adarsh K V and Nag A 2017 Angew. Chem., Int. Ed. 129 14375
[81] Volonakis G, Haghighirad A A, Milot R L, Sio W H, Filip M R, Wenger B, Johnston M B, Herz L M, Snaith H J and Giustino F 2017 J. Phys. Chem. Lett. 8 772
[82] Yuan F, Xi J, Dong H, Xi K, Zhang W, Ran C, Jiao B, Hou X, Jen K Y and Wu Z 2018 Physica Status Solidi RRL 12 1800090
[83] Zhang X, Wang C, Zhang Y, Zhang X, Wang S, Lu M, Cui H, Kershaw S V, Yu W W and Rogach A L 2019 ACS Energy Lett. 4 242
[1] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[2] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[3] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[4] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[5] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[6] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[7] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[8] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[9] Performance and stability-enhanced inorganic perovskite light-emitting devices by employing triton X-100
Ao Chen(陈翱), Peng Wang(王鹏), Tao Lin(林涛), Ran Liu(刘然), Bo Liu(刘波), Quan-Jun Li(李全军), and Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2021, 30(4): 048506.
[10] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[11] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[12] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[13] Stackable luminescent device integrating blue light emitting diode with red organic light emitting diode
Kang Su(苏康), Jing Li(李璟), Chang Ge(葛畅), Xing-Dong Lu(陆兴东), Zhi-Cong Li(李志聪), Guo-Hong Wang(王国宏), Jin-Min Li(李晋闽). Chin. Phys. B, 2020, 29(4): 048504.
[14] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[15] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
No Suggested Reading articles found!