|
|
Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures |
Jinlong Wang(王金龙)1, Wenqiang Dang(党文强)2, Daping Liu(刘大平)1, Zhichao Guo(郭志超)1 |
1 Department of Physics, Xinxiang University, Xinxiang 453003, China; 2 Department of Physics, Tianshui Normal University, Tianshui 741000, China |
|
|
Abstract The behaviors of helium clusters and self-interstitial tungsten atoms at different temperatures are investigated with the molecular dynamics method. The self-interstitial tungsten atoms prefer to form crowdions which can tightly bind the helium cluster at low temperature. The crowdion can change its position around the helium cluster by rotating and slipping at medium temperatures, which leads to formation of combined crowdions or dislocation loop locating at one side of a helium cluster. The combined crowdions or dislocation loop even separates from the helium cluster at high temperature. It is found that a big helium cluster is more stable and its interaction with crowdions or dislocation loop is stronger.
|
Received: 31 March 2020
Revised: 21 May 2020
Accepted manuscript online: 25 May 2020
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.82.Bg
|
(Metals and alloys)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11705157), the Henan Provincial Key Research Projects, China (Grant No. 17A140027), and the Ninth Group of Key Disciplines in Henan Province of China (Grant No. 2018119). |
Corresponding Authors:
Jinlong Wang, Wenqiang Dang
E-mail: 396292346@qq.com;530262320@qq.com
|
Cite this article:
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超) Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures 2020 Chin. Phys. B 29 093101
|
[1] |
Sethian J D, Raffray A R, Latkowski J, Blanchard J P, Snead L, Renk T J and Sharafat S 2005 J. Nucl. Mater. 347 161
|
[2] |
Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N and Team A U 2004 J. Nucl. Mater. 329-333 66
|
[3] |
Nishijima D, Miyamoto M, Iwakiri H, Ye M Y, Ohno N, Tokunaga K, Yoshida N and Takamura S 2005 Mater. Trans. 46 561
|
[4] |
Baldwin M and Doerner R 2008 Nucl. Fusion 48 035001
|
[5] |
Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A E 2014 J. Phys. D 47 224018
|
[6] |
Tokitani M, Yoshida N, Tokunaga K, Sakakita H, Kiyama S, Koguchi H, Hirano Y and Masuzaki S 2010 Plasma Fusion Res. 5 012
|
[7] |
De Temmerman G, Bystrov K, Zielinski J J J, Balden M, Matern G, Arnas C and Marot L 2012 J. Vac. Sci. Technol. 30 041306
|
[8] |
De Temmerman G, Bystrov K, Doerner R, Marot L, Wright G, Woller K, Whyte D and Zielinski J 2013 J. Nucl. Mater. 438 S78
|
[9] |
Baldwin M J and Doerner R P 2010 J. Nucl. Mater. 404 165
|
[10] |
Yoshida N, Iwakiri H, Tokunaga K and Baba T 2005 J. Nucl. Mater. 337-339 946
|
[11] |
Chen Z, Kecskes L J, Zhu K and Wei Q 2016 J. Nucl. Mater. 481 190
|
[12] |
Abernethy R G 2017 Mater. Sci. Technol. 33 388
|
[13] |
Becquart C and Domain C 2006 Phys. Rev. Lett. 97 196402
|
[14] |
Becquart C and Domain C 2009 J. Nucl. Mater. 385 223
|
[15] |
Tamura T, Kobayashi R, Ogata S and Ito A M 2014 Modell. Simul. Mater. Sci. Eng. 22 015002
|
[16] |
Liu Y, Zhou H, Zhang Y, Jin S and Lu G 2009 Nucl. Instrum. & Methods Phys. Res. Sect. B-beam Interact. Mater. Atoms 267 3193
|
[17] |
Boisse J, Domain C and Becquart C 2014 J. Nucl. Mater. 455 10
|
[18] |
Smirnov R, Krasheninnikov S and Guterl J 2015 J. Nucl. Mater. 463 359
|
[19] |
Zhou Y, Wang J, Hou Q and Deng A 2014 J. Nucl. Mater. 446 49
|
[20] |
Hu L, Hammond K D, Wirth B D and Maroudas D 2014 J. Appl. Phys. 115 173512
|
[21] |
Hu L, Hammond K D, Wirth B D and Maroudas D 2014 Surf. Sci. 626 L21
|
[22] |
Perez D, Vogel T and Uberuaga B P 2014 Phys. Rev. B 90 014102
|
[23] |
Sefta F, Hammond K D, Juslin N and Wirth B D 2013 Nucl. Fusion 53 073015
|
[24] |
Wang J, Niu L L, Shu X and Zhang Y 2015 Nucl. Fusion 55 092003
|
[25] |
Kobayashi R, Hattori T, Tamura T and Ogata S 2015 J. Nuclear Materials 463 1071
|
[26] |
You Y, Li D, Kong X, Wu X, Liu C S, Fang Q F, Pan B C, Chen J and Luo G N 2014 Nucl. Fusion 54 103007
|
[27] |
Harrison R W, Greaves G, Hinks J and Donnelly S 2017 J. Nucl. Mater. 495 492
|
[28] |
Takayama A, Ito A M, Saito S, Ohno N and Nakamura H 2013 Jpn. J. Appl. Phys. 52 01AL03
|
[29] |
Zhan J, Ye M, Mao S, Ren J and Xu X 2019 Fusion Engineering and Design 146 983
|
[30] |
Pentecoste L, Brault P, Thomann A L, Desgardin P, Lecas T, Belhabib T, Barthe M F and Sauvage T 2016 J. Nucl. Mater. 470 44
|
[31] |
Mason D R, Yi X, Kirk M A and Dudarev S L 2014 J. Phys.: Condens. Matter 26 375701
|
[32] |
Kong X, Wu X, You Y, Liu C S, Fang Q F, Chen J, Luo G N and Wang Z 2014 Acta Mater. 66 172
|
[33] |
Derlet P M, Nguyen-Manh D and Dudarev S 2007 Phys. Rev. B 76 054107
|
[34] |
Wang J, He B, Song W and Dang W 2019 Mol. Simul. 45 666
|
[35] |
Wang J, Niu L L, Shu X and Zhang Y 2015 J. Phys.: Condens. Matter 27 395001
|
[36] |
Hammond K D, Ferroni F and Wirth B D 2017 Fusion Sci. Technol. 71 7
|
[37] |
Li X, Liu Y, Yu Y, Luo G, Shu X and Lu G 2014 J. Nucl. Mater. 451 356
|
[38] |
Sandoval L, Perez D, Uberuaga B P and Voter A F 2015 Phys. Rev. Lett. 114 105502
|
[39] |
Kajita S, Sakaguchi W, Ohno N, Yoshida N and Saeki T 2009 Nucl. Fusion 49 095005
|
[40] |
Nishijima D, Ye M Y, Ohno N and Takamura S 2004 J. Nucl. Mater. 329-333 1029
|
[41] |
Valles G, Martin-Bragado I, Nordlund K, Lasa A, Björkas C, Safi E, Perlado J and Rivera A 2017 J. Nucl. Mater. 490 108
|
[42] |
Plimpton S 1995 J. Comput. Phys. 117 1
|
[43] |
Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
|
[44] |
Bonny G, Grigorev P and Terentyev D 2014 J. Phys.: Condens. Matter 26 485001
|
[45] |
Juslin N and Wirth B D 2013 J. Nucl. Mater. 432 61
|
[46] |
Voter A F 1998 Phys. Rev. B 57 R13985
|
[47] |
Voter A F, Montalenti F and Germann T C 2002 Annu. Rev. Mater. Res. 32 321
|
[48] |
Krasheninnikov S, Faney T and Wirth B 2014 Nucl. Fusion 54 073019
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|