Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093101    DOI: 10.1088/1674-1056/ab9619

Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures

Jinlong Wang(王金龙)1, Wenqiang Dang(党文强)2, Daping Liu(刘大平)1, Zhichao Guo(郭志超)1
1 Department of Physics, Xinxiang University, Xinxiang 453003, China;
2 Department of Physics, Tianshui Normal University, Tianshui 741000, China
Abstract  The behaviors of helium clusters and self-interstitial tungsten atoms at different temperatures are investigated with the molecular dynamics method. The self-interstitial tungsten atoms prefer to form crowdions which can tightly bind the helium cluster at low temperature. The crowdion can change its position around the helium cluster by rotating and slipping at medium temperatures, which leads to formation of combined crowdions or dislocation loop locating at one side of a helium cluster. The combined crowdions or dislocation loop even separates from the helium cluster at high temperature. It is found that a big helium cluster is more stable and its interaction with crowdions or dislocation loop is stronger.
Keywords:  helium cluster      self-interstitial      tungsten      molecular dynamics simulation  
Received:  31 March 2020      Revised:  21 May 2020      Accepted manuscript online:  25 May 2020
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  61.80.Jh (Ion radiation effects)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11705157), the Henan Provincial Key Research Projects, China (Grant No. 17A140027), and the Ninth Group of Key Disciplines in Henan Province of China (Grant No. 2018119).
Corresponding Authors:  Jinlong Wang, Wenqiang Dang     E-mail:;

Cite this article: 

Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超) Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures 2020 Chin. Phys. B 29 093101

[1] Sethian J D, Raffray A R, Latkowski J, Blanchard J P, Snead L, Renk T J and Sharafat S 2005 J. Nucl. Mater. 347 161
[2] Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N and Team A U 2004 J. Nucl. Mater. 329-333 66
[3] Nishijima D, Miyamoto M, Iwakiri H, Ye M Y, Ohno N, Tokunaga K, Yoshida N and Takamura S 2005 Mater. Trans. 46 561
[4] Baldwin M and Doerner R 2008 Nucl. Fusion 48 035001
[5] Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A E 2014 J. Phys. D 47 224018
[6] Tokitani M, Yoshida N, Tokunaga K, Sakakita H, Kiyama S, Koguchi H, Hirano Y and Masuzaki S 2010 Plasma Fusion Res. 5 012
[7] De Temmerman G, Bystrov K, Zielinski J J J, Balden M, Matern G, Arnas C and Marot L 2012 J. Vac. Sci. Technol. 30 041306
[8] De Temmerman G, Bystrov K, Doerner R, Marot L, Wright G, Woller K, Whyte D and Zielinski J 2013 J. Nucl. Mater. 438 S78
[9] Baldwin M J and Doerner R P 2010 J. Nucl. Mater. 404 165
[10] Yoshida N, Iwakiri H, Tokunaga K and Baba T 2005 J. Nucl. Mater. 337-339 946
[11] Chen Z, Kecskes L J, Zhu K and Wei Q 2016 J. Nucl. Mater. 481 190
[12] Abernethy R G 2017 Mater. Sci. Technol. 33 388
[13] Becquart C and Domain C 2006 Phys. Rev. Lett. 97 196402
[14] Becquart C and Domain C 2009 J. Nucl. Mater. 385 223
[15] Tamura T, Kobayashi R, Ogata S and Ito A M 2014 Modell. Simul. Mater. Sci. Eng. 22 015002
[16] Liu Y, Zhou H, Zhang Y, Jin S and Lu G 2009 Nucl. Instrum. & Methods Phys. Res. Sect. B-beam Interact. Mater. Atoms 267 3193
[17] Boisse J, Domain C and Becquart C 2014 J. Nucl. Mater. 455 10
[18] Smirnov R, Krasheninnikov S and Guterl J 2015 J. Nucl. Mater. 463 359
[19] Zhou Y, Wang J, Hou Q and Deng A 2014 J. Nucl. Mater. 446 49
[20] Hu L, Hammond K D, Wirth B D and Maroudas D 2014 J. Appl. Phys. 115 173512
[21] Hu L, Hammond K D, Wirth B D and Maroudas D 2014 Surf. Sci. 626 L21
[22] Perez D, Vogel T and Uberuaga B P 2014 Phys. Rev. B 90 014102
[23] Sefta F, Hammond K D, Juslin N and Wirth B D 2013 Nucl. Fusion 53 073015
[24] Wang J, Niu L L, Shu X and Zhang Y 2015 Nucl. Fusion 55 092003
[25] Kobayashi R, Hattori T, Tamura T and Ogata S 2015 J. Nuclear Materials 463 1071
[26] You Y, Li D, Kong X, Wu X, Liu C S, Fang Q F, Pan B C, Chen J and Luo G N 2014 Nucl. Fusion 54 103007
[27] Harrison R W, Greaves G, Hinks J and Donnelly S 2017 J. Nucl. Mater. 495 492
[28] Takayama A, Ito A M, Saito S, Ohno N and Nakamura H 2013 Jpn. J. Appl. Phys. 52 01AL03
[29] Zhan J, Ye M, Mao S, Ren J and Xu X 2019 Fusion Engineering and Design 146 983
[30] Pentecoste L, Brault P, Thomann A L, Desgardin P, Lecas T, Belhabib T, Barthe M F and Sauvage T 2016 J. Nucl. Mater. 470 44
[31] Mason D R, Yi X, Kirk M A and Dudarev S L 2014 J. Phys.: Condens. Matter 26 375701
[32] Kong X, Wu X, You Y, Liu C S, Fang Q F, Chen J, Luo G N and Wang Z 2014 Acta Mater. 66 172
[33] Derlet P M, Nguyen-Manh D and Dudarev S 2007 Phys. Rev. B 76 054107
[34] Wang J, He B, Song W and Dang W 2019 Mol. Simul. 45 666
[35] Wang J, Niu L L, Shu X and Zhang Y 2015 J. Phys.: Condens. Matter 27 395001
[36] Hammond K D, Ferroni F and Wirth B D 2017 Fusion Sci. Technol. 71 7
[37] Li X, Liu Y, Yu Y, Luo G, Shu X and Lu G 2014 J. Nucl. Mater. 451 356
[38] Sandoval L, Perez D, Uberuaga B P and Voter A F 2015 Phys. Rev. Lett. 114 105502
[39] Kajita S, Sakaguchi W, Ohno N, Yoshida N and Saeki T 2009 Nucl. Fusion 49 095005
[40] Nishijima D, Ye M Y, Ohno N and Takamura S 2004 J. Nucl. Mater. 329-333 1029
[41] Valles G, Martin-Bragado I, Nordlund K, Lasa A, Björkas C, Safi E, Perlado J and Rivera A 2017 J. Nucl. Mater. 490 108
[42] Plimpton S 1995 J. Comput. Phys. 117 1
[43] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
[44] Bonny G, Grigorev P and Terentyev D 2014 J. Phys.: Condens. Matter 26 485001
[45] Juslin N and Wirth B D 2013 J. Nucl. Mater. 432 61
[46] Voter A F 1998 Phys. Rev. B 57 R13985
[47] Voter A F, Montalenti F and Germann T C 2002 Annu. Rev. Mater. Res. 32 321
[48] Krasheninnikov S, Faney T and Wirth B 2014 Nucl. Fusion 54 073019
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[6] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[7] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[10] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[11] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[12] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[13] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!