|
|
HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields |
Xi Zhao(赵曦)1,5,6, Gangtai Zhang(张刚台)2,†, Tingting Bai(白婷婷)3, Jun Wang(王俊)4,‡, and Wei-Wei Yu(于伟威)7,§ |
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China; 2 College of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji 721016, China; 3 College of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China; 4 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 5 Department of Physics, Kansas State University, Manhattan, KS 66506, USA; 6 School of Physics and Electronics, Qiannan Normal College for Nationalities, Duyun 558000, China; 7 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China |
|
|
Abstract Electron-electron correlation plays an important role in the underlying dynamics in physics and chemistry. Helium is the simplest and most fundamental two-electron system. The dynamic process of helium in a strong laser field is still a challenging issue because of the large calculation cost. In this study, a graphic processing unit (GPU) openACC based ab initio numerical simulations package HeTDSE is developed to solve the full-dimensional time-dependent Schrödinger equation of helium subjected to a strong laser pulse. HeTDSE uses B-spline basis sets expansion method to construct the radial part of the wavefunction, and the spherical harmonic functions is used to express for the angular part. Adams algorithm is employed for the time propagation. Our example shows that HeTDSE running on an NVIDIA Kepler K20 GPU can outperform the one on an Intel E5-2640 single CPU core by a factor of 147. HeTDSE code package can be obtained from the author or from the author's personal website (doi: 10.13140/RG.2.2.15334.45128) directly under the GPL license, so HeTDSE can be downloaded, used and modified freely.
|
Received: 10 August 2020
Revised: 27 January 2021
Accepted manuscript online: 01 February 2021
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported the National Natural Science Foundation of China (Grant Nos. 11904192, 11604119, 11627807, and 11604131), the Natural Science Basic Research Plan of Shaanxi Province of China (Grant No. 2016JM1012), the Natural Science Foundation of the Education Committee of Shaanxi Province of China (Grant No. 18JK0050), the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK16069), and the Natural Science Foundation of Liaoning Province of China (Grant No. LQ 2020022). |
Corresponding Authors:
Gangtai Zhang, Jun Wang, Wei-Wei Yu
E-mail: gtzhang79@163.com;wangjun86@jlu.edu.cn;weiweiyu2012@163.com
|
Cite this article:
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威) HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields 2021 Chin. Phys. B 30 073201
|
[1] Xi Zhao's personal Researchgate website https://www.researchgate.net/publication/348786906_HeTDSE, with DOI: 10.13140/RG.2.2.15334.45128 [2] Shintake T et al. 2008 Nat. Photon. 2 555 [3] Ackermann W et al. 2007 Nat. Photon. 1 336 [4] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [5] Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689 [6] Xia C L, Ge X L, Zhao X, Guo J and Liu X S 2012 Phys. Rev. A 85 025802 [7] Guo J, Ge X L, Zhong H Y, Zhao X, Zhang M, Jiang Y F and Liu X S 2014 Phys. Rev. A 90 053410 [8] Zhang J, Pan X F, Zhao X, Guo J, Zhu K G and Liu X S 2019 J. Opt. 21 125503 [9] Zhao Y, Ma S, Jiang S, Yang Y, Zhao X and Chen J 2019 Opt. Express 27 34392 [10] Zhao Y T, Xu X Q, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Phys. Rev. A 101 033413 [11] Zhao Y T, Jiang S C, Zhao X, Chen J G and Yang Y J 2020 Opt. Lett. 45 2874 [12] Qiao Y, Wu D, Chen J G, Wang J, Guo F M and Yang Y J 2020 Phys. Rev. A 100 063428 [13] Jin C, Tang X, Li B, Wang K and Lin C D 2020 Phys. Rev. Appl. 14 014057 [14] Zhang Z, Peng L Y, Xu M H, Starace A F, Morishite T and Gong Q H 2011 Phys. Rev. A 84 043409 [15] Martin J M, Bade S, Dubosclard W, Khan M A, Kim S, Garraway B M and Alzar C L G 2019 Phys. Rev. Appl. 12 014033 [16] Lopez C, Trimeche A, Comparat D and Picard Y J 2019 Phys. Rev. Appl. 11 064049 [17] Guan J, Behrendt V, Shen P, Hofsass S, Muthu-Arachchige T, Grzesiak J, Stienkemeier F and Dulitz K 2019 Phys. Rev. Appl. 11 054073 [18] Griesser H P, Perrella C, Light P S and Luiten A N 2019 Phys. Rev. Appl. 11 054026 [19] Luo Y and Zhang P 2019 Phys. Rev. Appl. 12 044056 [20] Chen P, Wang X, Luan Y, Fei Z, Lacroix B, Lei S and Das S R 2020 J. Appl. Phys. 128 024305 [21] Zhang Z 2012 PhD Dissertation (Beijing: Peking University) (in Chinese) [22] Kinoshita T 1956 Phys. Rev. 105 1490 [23] Coulson C A and Neilson A H 1961 Proc. Phys. Soc. 78 831 [24] Curl R F and Coulson C A 1965 Proc. Phys. Soc. 85 647 [25] Colgan J and Pindzola M S 2002 Phys. Rev. Lett. 88 173002 [26] Feng L and van der Hart H W 2003 J. Phys. B 36 L1 [27] Laulan S and Bachau H 2003 Phys. Rev. A 68 013409 [28] Piraux B, Bauer J, Laulan S and Bachau H 2003 Eur. Phys. J. D 26 7 [29] Hu S X, Colgan J and Collins L A 2005 J. Phys. B 38 L35 [30] Foumouo E, Kamta G L, Edah G and Piraux B 2006 Phys. Rev. A 74 063409 [31] Guan X, Bartschat K and Schneider B I 2008 Phys. Rev. A 77 043421 [32] Shi T Y and Lin C D 2002 Phys. Rev. Lett. 89 163202 [33] Hasegawa H, Takahashi E J, Nabekawa Y, Ishikawa K L and Midorikawa K 2005 Phys. Rev. A 71 023407 [34] Nabekawa Y, Hasegawa H, Takahashi E J andMidorikawa K 2005 Phys. Rev. Lett. 94 043001 [35] Antoine P, Foumouo E, Piraux B, Shimizu T, Hasegawa H, Nabekawa Y and Midorikawa K 2008 Phys. Rev. A 78 023415 [36] Sorokin A A, Wellhöfer M, Bobashev S V, Tiedtke K and Richter M 2007 Phys. Rev. A 75 051402(R) [37] Rudenko A, Foucar L, Kurka M, Ergler T, Kühnel K U, Jiang Y H, Voitkiv A, Najjari B, Kheifets A, Lüdemann S, Havermeier T, Smolarski M, Schssler S, Cole K, Schöffler M, Dörner R, Düsterer S, Li W, Keitel B, Treusch R, Gensch M, Schröter C D, Moshammer R and Ullrich J 2008 Phys. Rev. Lett. 101 073003 [38] Kurka M et al. 2010 New J. Phys. 12 073035 [39] Zhang Z, Peng L Y, Gong Q H and Morishite T 2010 Opt. Express 18 8976 [40] Parker J S, Moore L R, Meharg K J, Dundas D and Taylor K T 2001 J. Phys. B 34 L69 [41] Zhang B, Yuan J and Zhao Z 2015 Comput. Phys. Commun. 194 84 [42] Drake G W F 2006 Springer Handbook of Atomic, Molecular and Optical Physics (New York: Springer) pp. 205-206 [43] Thibault J C and Senocak I 2009 CUDA Implementation of a Navier-Stokes Solver on Multi-GPU Desktop Platforms for Incompressible Flows in Proceedings of the 47th AIAA Aerospace Sciences Meeting Orlando, Florida, USA, [44] NVIDIA CUDA ZONE. https://developer.nvidia.com/cuda-zone. version 4.0, 2011 [45] Komura Y 2015 Comput. Phys. Commun. 197 298 [46] Stone J E, Phillips J C, Freddolino P L, Hardy D J, Trabuco L G and Schulten K 2007 J. Comput. Chem.28 2618 [47] Cheng W L, Sheharyar A, Sadr R and Bouhali O 2015 Comput. Phys. Commun. 182 39 [48] Broin C and Nikolopoulos L A A 2014 Comput. Phys. Commun. 184 1791 [49] Nguyen T D 2017 Comput. Phys. Commun. 212 113 [50] Exl L 2017 Comput. Phys. Commun. 221 352 [51] OpenACC official website. http://www.openacc-standard.org/ [52] Venuti M and Decleva P 1997 J. Phys. B 30 4839 [53] Nepstad R, Birkeland T and Forre M 2010 Phys. Rev. A 81 063402 [54] Hasbani R, Cormier E and Bachau H 2000 J. Phys. B 33 2101 [55] Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815 [56] Zhao X, Wei H, Wu Y and Lin C D 2017 Phys. Rev. A 95 043407 [57] Zhao X, Wei H, Wei C and Lin C D 2017 J. Opt. 19 114009 [58] Shi T Y, Bao C G and Li B W 2001 Commun. Theor. Phys. 35 195 [59] Scrinzi A and Piraux B 1998 Phys. Rev. A 58 1310 [60] Yu W, Zhao X, Wei H, Wang S J and Lin C D 2019 Phys. Rev. A 99 033403 [61] Zhao X, Wang S J, Yu W W, Wei H, Wei C, Wang B C, Chen J G and Lin C D 2020 Phys. Rev. Appl. 13 034043 [62] Zhao X, Wei H, Yu W and Lin C D 2018 Phys. Rev. A 98 053404 [63] Shampine L F and Gordon M K 1975 Computer Solution of Ordinary Differential Equations: The Initial Value Problem (San Francisco, CA: Freeman) [64] Li H, Sautenkov V A, Rostovtsev Y V, Kash M M, Anisimov P M, Welch G R and Scully M O 2010 Phys. Rev. Lett. 104 103001 [65] Zhao X, Chen J, Fu P, Liu X, Yan Z and Wang B 2013 Phys. Rev. A 87 043411 [66] Zhao X, Yang Y, Liu X and Wang B 2014 Chin. Phys. Lett. 31 043202 [67] Peng D, Wu B, Fu P, Wang B, Gong J and Yan Z C 2010 Phys. Rev. A 82 053407 [68] Nakajima T and Watanabe S 2006 Phys. Rev. Lett. 96 213001 [69] Zhai Z, Peng D, Zhao X, Guo F, Yang Y, Fu P, Chen J, Yan Z C and Wang B 2012 Phys. Rev. A 86 043432 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|