Special Issue:
SPECIAL TOPIC — Ion beam modification of materials and applications
|
SPECIAL TOPIC—Ion beam modification of materials and applications |
Prev
Next
|
|
|
Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing |
Zheng Han(韩铮)1, Xu Wang(王旭)1,†, Jiao Wang(王娇)2, Qing Liao(廖庆)3, and Bingsheng Li(李炳生)3,‡ |
1 Nuclear Power Institute of China, Chengdu 610200, China; 2 Sichuan Vocational and Technical College of Communications, Chengdu 611130, China; 3 State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China |
|
|
Abstract A nano-twinned microstructure was found in amorphous SiC after high-temperature annealing. Grazing incidence x-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were performed to characterize the microstructure and phase transition in the recrystallization layer. After 1500 ℃ or 2-h annealing, 3C-SiC grains and numerous stacking faults on the {111} planes were visible. Some 3C-SiC grains have nano-twinned structure with {011} planes. Between the nano-twinned 3C-SiC grains, there is a stacking fault, indicating that the formation mechanisms of the nano-twinned structure are related to the disorder of Si atoms. The increase in the twin thickness with increasing annealing temperature demonstrates that the nano-twinned structure can sink for lattice defects, in order to improve the radiation tolerance of SiC.
|
Received: 07 March 2021
Revised: 21 April 2021
Accepted manuscript online: 10 May 2021
|
PACS:
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.82.Fk
|
(Semiconductors)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
81.10.Jt
|
(Growth from solid phases (including multiphase diffusion and recrystallization))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075194) and Sichuan Science and Technology Program (Grant No. 2020ZYD055). |
Corresponding Authors:
Xu Wang, Bingsheng Li
E-mail: wcici2018@126.com;libingshengmvp@163.com
|
Cite this article:
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生) Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing 2021 Chin. Phys. B 30 086107
|
[1] Choyke W J and Persl G 1997 Mater. Res. Soc. Bull. 22 25 [2] Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485 [3] Snead L L, Katoh Y, Henager C H, Hasegawa A, Kohyama A and Riccardi B 2007 J. Nucl. Mater. 367-370 659 [4] Li B S, Du Y Y and Wang Z G 2015 Nucl. Intrum. Methods Phys. Res. Sect. B 345 53 [5] Ye C, Ran G, Zhou W, Shen Q, Feng Q J and Lin J X 2017 Materials 10 1231 [6] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103 [7] Daghouj N, Li B S, Callisti M, Sen H S, Jin J, Ou X, Karlik M and Polcar T 2020 Acta Mater. 188 609 [8] Li J J, Huang H F, Lei G H, Huang Q, Liu R D, Li D H and Yan L 2014 J. Nucl. Mater. 454 173 [9] Zhang L M, Jiang W J, Ai W S, Chen L and Wang T S 2018 J. Nucl. Mater. 505 249 [10] Li B S, Krsjak V, Degmova J, Wang Z G, Shen T L, Li H, Sojak S, Slugen V and Kawasuso A 2020 J. Nucl. Mater. 535 152180 [11] Wang X, Li J H, Wang J, Song J, Zhao F Q, Tang H X, Li B S and Xiong A L 2019 Mater. Des. Process. Comm. 1 e87 [12] Bae In-Tae, Ishimaru M, Hirotsu Y and Sickafus K E 2004 J. Appl. Phys. 96 1451 [13] Heera V, Kogler R, Skorupa W and Stoemenos J 1995 Appl. Phys. Lett. 67 1999 [14] Liu Y Z, Li B S, Lin H and Zhang L 2017 Chin. Phys. Lett. 34 076101 [15] Harada S, Ishimaru M, Motooka T, Nakata T, Yoneda T and Inoue M 1996 Appl. Phys. Lett. 69 3534 [16] Cao S Q, Pedraza A J, Lowndes D H and Allard L F 1994 Appl. Phys. Lett. 65 2940 [17] Wang C X, Yang T F, Tracy C L, Xiao J R, Liu S H, Fang Y, Yan Z F, Ge W, Xue J M, Zhang J, Wang J Y, Huang Q, Ewing R C and Wang Y G 2018 Acta Mater. 144 432 [18] Wang C X, Yang T F, Xiao J R, Liu S S, Xue J M, Wang J Y, Huang Q and Wang Y G 2015 Acta Mater. 98 197 [19] Dai H, Wong E W, Lu Y Z, Fan S and Lieber C M 1995 Nature 375 769 [20] Fan Y J, Wu X L and Chu P K 2006 Prog. Mater. Sci. 51 983 [21] Matsumoto T, Takahshi J, Tamaki T, Futagi T, Mimura H, Kanemitsu Y 1994 Appl. Phys. Lett. 64 226 [22] Wang C H, Chang Y H, Yen M Y, Peng C W, Lee C Y and Chiu H T 2005 Adv. Mater. 17 419 [23] Li L, Jin S X, Zhang P, Wang D D, Cao X Z, Guo L P, Xu Q, Li J, Zhang T M, Li L B and Wang B Y 2019 J. Nucl. Mater. 526 151748 [24] Jin S X, Bing M, Zhang W P, Zhang T M, Li Y, Guo L P, Cao X Z and Wang B Y 2019 Materialia 5 100241 [25] Li B S, Peng D P, Li J H, Kang L, Zhang T M, Zhang Z X, Jin S X, Cao X Z, Liu J H, Wu L, Wang X, Fang Z Q, Zhou C L, Yang Z and Krsjak V 2021 Vacuum 184 109909 [26] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103 [27] Zeigler F J, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818 [28] Devanathan R and Weber W J 2000 J. Nucl. Mater. 278 258 [29] Li B S, Zhang C, Liu H P, Xu L J, Wang X, Yang Z, Ge F F, Gao W and Shen T L 2020 Fusion Eng. Des. 154 111511 [30] Leung J W, Linnarsson M K, Svensson B G and Cockayne D J H 2005 Phys. Rev. B 71 165210 [31] Persson P O A, Hultman L, Janson M S, Hallen A, Yakimova R, Panknin D and Skorupa W 2002 J. Appl. Phys. 92 2501 [32] Xi J Q, Yuan F L, Zhang Y W and Weber W J 2017 Scripta Mater. 139 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|