Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 086109    DOI: 10.1088/1674-1056/abff48
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing

Yi-Peng Li(李奕鹏)1,2, Guang Ran(冉广)1,2,†, Xin-Yi Liu(刘歆翌)1,2, Xi Qiu(邱玺)3, Qing Han(韩晴)1,2, Wen-Jie Li(李文杰)3, and Yi-Jia Guo(郭熠佳)1,2
1 College of Energy, Xiamen University, Xiamen 361102, China;
2 Fujian Research Center for Nuclear Engineering, Xiamen 361102, China;
3 Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
Abstract  The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy (TEM) during 30 keV He+ irradiation (at 673 K and 1173 K) and post-irradiation annealing (after 30 keV He+ irradiation with the fluence of 5.74×1016 He+/cm2 at 673 K). Both He+ irradiation and subsequently annealing induced the initiation, aggregation, and growth of helium bubbles. Temperature had a significant effect on the initiation and evolution of helium bubbles. The higher the irradiation temperature was, the larger the bubble size at the same irradiation fluence would be. At 1173 K irradiation, helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size, which would induce the formation of microcracks. At the same time, the geometry of helium bubbles changed from sphericity to polyhedron. The polyhedral bubbles preferred to grow in the shape bounded by {100} planes. After statistical analysis of the characteristic parameters of helium bubbles, the functions between the average size, number density of helium bubbles, swelling rate and irradiation damage were obtained. Meanwhile, an empirical formula for calculating the size of helium bubbles during the annealing was also provided.
Keywords:  helium bubbles      in-situ TEM observation      ion irradiation      annealing      molybdenum  
Received:  15 April 2021      Revised:  06 May 2021      Accepted manuscript online:  10 May 2021
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1967211, U1832112, and 11975191).
Corresponding Authors:  Guang Ran     E-mail:  gran@xmu.edu.cn

Cite this article: 

Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳) In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing 2021 Chin. Phys. B 30 086109

[1] Yvon P and Carre F 2009 J. Nucl. Mater. 385 217
[2] Tavassoli A A F 2002 J. Nucl. Mater. 302 73
[3] Wu G Y, Hu N W, Deng H Q, Xiao S F and Hu W Y 2017 Nucl. Sci. Tech. 28 29
[4] Gao N, Shen T L, Kurtz R, Wang Z G and Gao F 2016 Scr. Mater. 113 190
[5] El-Atwani O, Aydogan E, Esquivel E, Efe M, Wang Y Q and Maloy S A 2018 Acta Mater. 147 277
[6] Marian J, Wirth B D and Perlado J M 2002 Phys. Rev. Lett. 88 255507
[7] Arakawa K, Hatanaka M, Kuramoto E, Ono K and Mori H 2006 Phys. Rev. Lett. 96 125506
[8] Li B S, Yang Z, Xu S, Wei K F, Wang Z G, Shen T L, Zhang T M and Liao Q 2021 Chin. Phys. B 30 36102
[9] Li Y P, Wang L, Ran G, Yuan Y, Wu L, Liu X Y, Qiu X, Sun Z P, Ding Y F, Han Q, Wu X Y, Deng H Q and Huang X Y 2021 Acta Mater. 206 116618
[10] El Keriem M S A, Van Der Werf D P and Pleiter F 1993 Phys. Rev. B 47 14771
[11] Gilbert M R and Sublet J C 2011 Nucl. Fusion 51 043005
[12] Xu W Z, Zhang Y F, Cheng G M, Jian W W, Millett P C, Koch C C, Mathaudhu S N and Zhu Y T 2013 Nat. Commun. 4 2288
[13] Dennett C A, So K P, Kushima A, Buller D L, Hattar K and Short M P 2018 Acta Mater. 145 496
[14] Xie H X, Gao N, Xu K, Lu G H, Yu T and Yin F X 2017 Acta Mater. 141 10
[15] Wang L, Hao T, Zhao B L, Zhang T, Fang Q F, Liu C S, Wang X P and Cao L 2018 J. Nucl. Mater. 508 107
[16] Liao Q, Li B S, Kang L and Li X G 2020 Chin. Phys. B 29 076103
[17] Shehla H, Ali A, Zongo S, Javed I, Ishaq A, Khizar H, Naseem S and Maaza M 2015 Chin. Phys. Lett. 32 096101
[18] Ono K, Arakawa K and Hojou K 2002 J. Nucl. Mater. 307 1507
[19] El-Atwani O, Cunningham W S, Perez D, Martinez E, Trelewicz J R, Li M and Maloy S A 2020 Scr. Mater. 180 6
[20] Yi X O, Arakawa K, Nguyen-Manh D, Ferroni F, Liu P, Han W, Wan F and Roberts S G 2017 Fusion Eng. Des. 125 454
[21] Chen Y, Li Y P, Ran G, Wu L, Ye C, Han Q, Wang H and Du H L 2020 Prog. Nucl. Energy 129 103502
[22] Wand H J, Li Y D, Guo Q, Ma L Y, Wen L and Wang B 2015 Chin. Phys. Lett. 32 056102
[23] Wei Q M, Li N, Sun K and Wang L M 2010 Scr. Mater. 63 430
[24] Tyler S K and Goodhew P J 1983 Radiat. Eff. 78 147
[25] Yan Z F, Yang T F, Lin Y R, Lu Y P, Su Y, Zinkle S J and Wang Y G 2020 J. Nucl. Mater. 532 152045
[26] Li R R, Zhang Y F, Geng D C, Zhang G W, Watanabe H, Han W T and Wang F R 2019 Acta Phys. Sin. 68 216101 (in Chinese)
[27] Zhang J C, Sun S, Yang Z M, Qiu N and Wang Y 2020 Chin. Phys. B 29 066104
[28] Li F B, Ran G, Gao N, Zhao S Q and Li N 2019 Chin. Phys. B 28 085203
[29] Wang D, Gao N, Setyawan W, Kurtz R J, Wang Z G, Gao X, He W H and Pang L L 2016 Chin. Phys. Lett. 33 096102
[30] Lane P and Goodhew P 1983 Philos. Mag. A 48 965
[31] El-Atwani O, Hinks J A, Greaves G, Allain J P and Maloy S A 2017 Mater. Res. Lett. 5 343
[32] Li Y P, Ran G, Guo Y J, Sun Z P, Liu X Y, Li Y M, Qiu X and Xin Y 2020 Acta Mater. 201 462
[33] Huang M J, Li Y P, Ran G, Yang Z B and Wang P H 2020 J. Nucl. Mater. 538 152240
[34] Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 1818
[35] Standard Practice for Neutron Radiation Damage Simulation by Charge-Particle Irradiation E521-96, Annual Book of ASTM Standards, Vol. 12.02, American Society for Testing and Materials, Philadelphia (1996) Reapproved 2009
[36] Zhang W P, Luo F F, Yu Y X, Zheng Z C, Shen Z Y, Guo L P, Ren Y Y and Suo J P 2016 J. Nucl. Mater. 479 302
[37] Was G S 2016 Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd edn (New York: Springer) pp. 467-469
[38] Evans J 2004 J. Nucl. Mater. 334 40
[39] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388
[40] Gan J, Sun C, He L F, Zhang Y F, Jiang C and Gao Y P 2018 J. Nucl. Mater. 505 207
[41] Kelly R 1967 Phys. Status Solidi 21 451
[42] Chen P J J and Trinkaus H 1999 Phys. Rev. Lett. 82 2709
[43] Schober T and Trinkaus H 1992 Philos. Mag. A 65 1235
[44] Miller W A, Carpenter G J C and Chadwick G A 1969 Philos. Mag. 19 305
[45] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[46] Goodhew P J 1981 J. Nucl. Mater. 98 221
[47] Tyler S K and Goodhew P J 1979 J. Microsc. 116 55
[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[5] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[6] Morphological and structural damage investigation of nanostructured molybdenum fuzzy surface after pulsed plasma bombardment
Yu-Chuan Luo(罗玉川), Rong Yan(鄢容), Guo Pu(蒲国), Hong-Bin Wang(王宏彬), Zhi-Jun Wang(王志君), Chi Yang(杨驰), Li Yang(杨黎), Heng-Xin Guo(郭恒鑫), Zhi-Bing Zhou(周志兵), Bo Chen(陈波), Jian-Jun Chen(陈建军), Fu-Jun Gou(芶富均), Zong-Biao Ye(叶宗标), and Kun Zhang(张坤). Chin. Phys. B, 2022, 31(4): 045203.
[7] Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
Cheng-Xiang Zhao(赵承祥), Miao-Miao Zheng(郑苗苗), Yuan Qie(郄媛), and Fang-Wei Han(韩方微). Chin. Phys. B, 2022, 31(12): 127202.
[8] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[9] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[10] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[11] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[12] Fabrication and characterization of Al-Mn superconducting films for applications in TES bolometers
Qing Yu(余晴), Yi-Fei Zhang(张翼飞), Chang-Hao Zhao(赵昌昊), Kai-Yong He(何楷泳), Ru-Tian Huang(黄汝田), Yong-Cheng He(何永成), Xin-Yu Wu(吴歆宇), Jian-She Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(7): 077402.
[13] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[14] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[15] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
No Suggested Reading articles found!