Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088801    DOI: 10.1088/1674-1056/abea88
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction

Xian-Wu Xiu(修显武)1,†, Wen-Cheng Zhang(张文程)1,†, Shu-Ting Hou(侯淑婷)1, Zhen Li(李振)1, Feng-Cai Lei(雷风采)2, Shi-Cai Xu(许士才)3, Chong-Hui Li(李崇辉)1,3,4, Bao-Yuan Man(满宝元)1, Jing Yu(郁菁)1,‡, and Chao Zhang(张超)1,§
1 School of Physics and Electronics, Collaborative Innovation Center of Light Manipulations and Applications, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China;
2 College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China;
3 Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
4 Institute for Integrative Nanosciences, IFW Dresden, Dresden, 01069, Germany
Abstract  The efficient production of hydrogen through electrocatalytic decomposition of water has broad prospects in modern energy equipment. However, the catalytic efficiency and durability of hydrogen evolution catalyst are still very deficient, which need to be further explored. Here in this work, we prove that introducing a graphene layer (Gr) between the molybdenum disulfide and nickel foam (Ni-F) substrate can greatly improve the catalytic performance of the hybrid. Owing to the excitation of local surface plasmon resonance (LSPR) of gold nanoparticles (NPs), the electrocatalytic hydrogen releasing activity of the MoS2/Gr/Ni-F heterostructure is greatly improved. This results in a significant increase in the current density of AuNPs/MoS2/Gr/Ni-F composite material under light irradiation and in the dark at 0.2 V (versus reversible hydrogen electrode (RHE)), which is much better than in MoS2/Gr/Ni-F composite materials. The enhancement of hydrogen release can be attributed to the injection of hot electrons into MoS2/Gr/Ni-F by AuNPs, which will improve the electron density of MoS2/Gr/Ni-F, promote the reduction of H2O, and further reduce the activation energy of the electrocatalyst hydrogen evolution reaction (HER). We also prove that the introduction of graphene can improve its stability in acidic catalytic environments. This work provides a new way of designing efficient water splitting system.
Keywords:  hydrogen evolution reaction      catalytic      graphene      plasmon resonance  
Received:  30 November 2020      Revised:  05 February 2021      Accepted manuscript online:  01 March 2021
PACS:  88.30.em (Electrolytic hydrogen)  
  81.16.Hc (Catalytic methods)  
  61.48.Gh (Structure of graphene)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804200, 11974222, 11904214, and 11774208), the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J18KZ011), the Taishan Scholars Program of Shandong Province (Grant No. tsqn201812104), the Qingchuang Science and Technology Plan of the Shandong Province, China (Grant Nos. 2019KJJ014 and 2019KJJ017), China Postdoctoral Science Foundation (Grant No. 2019M662423), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR201910280104).
Corresponding Authors:  Jing Yu, Chao Zhang     E-mail:  yujing1608@sdnu.edu.cn;czsdnu@126.com

Cite this article: 

Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超) Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction 2021 Chin. Phys. B 30 088801

[1] Wang C C, Li J R, Lv X L, Zhang Y Q and Guo G 2014 Energy Environ. Sci. 7 2831
[2] Chu S and Majumdar A 2012 Nature 488 294
[3] Dresselhaus M S and Thomas I L 2001 Nature 414 332
[4] Turner J A 2004 Science 305 972
[5] Zou X and Zhang Y 2015 Chem. Soc. Rev. 44 5148
[6] Roger I, Shipman M A and Symes M D 2017 Nat. Rev. Chem. 1 1
[7] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296
[8] Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S and Schaak R E 2013 J. Am. Chem. Soc. 135 9267
[9] Kibsgaard J, Chen Z, Reinecke B N and Jaramillo T F 2012 Nat. Mater. 11 963
[10] Chen W F, Sasaki K, Ma C, Frenkel A I, Marinkovic N, Muckerman J T, Zhu Y and Adzic R R 2012 Angew. Chem.-Int. Edn. 51 6131
[11] Andreiadis E S, Jacques P A, Tran P D, Leyris A, Chavarot-Kerlidou M, Jousselme B, Matheron M, Pécaut J, Palacin S, Fontecave M and Artero V 2013 Nat. Chem. 5 48
[12] Vrubel H and Hu X 2012 Angew. Chem.-Int. Edn. 51 12703
[13] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100
[14] Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308
[15] Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B and Xie Y 2013 J. Am. Chem. Soc. 135 17881
[16] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L and Jin S 2013 J. Am. Chem. Soc. 135 10274
[17] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296
[18] Zhang C, Jiang S Z, Huo Y Y, Liu A H, Xu S C, Liu X Y, Sun Z C, Xu Y Y, Li Z and Man B Y 2015 Opt. Express 23 24811
[19] Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X and Zhang C 2018 Opt. Express 26 21546
[20] Zhang C, Li C, Yu J, Jiang S, Xu S, Yang C, Liu Y J, Gao X, Liu A and Man B 2018 Sens. Actuator B-Chem. 258 163
[21] Wang C, Nie X G, Shi Y, Zhou Y, Xu J J, Xia X H and Chen H Y 2017 ACS Nano 11 5897
[22] Kamat P V and Hartland G V 2018 ACS Energy Lett. 3 1467
[23] Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H and Chen H Y 2015 J. Am. Chem. Soc. 137 7365
[24] Liu G, Li P, Zhao G, Wang X, Kong J, Liu H, Zhang H, Chang K, Meng X, Kako T and Ye J 2016 J. Am. Chem. Soc. 138 9128
[25] Wang C, Shi, Y, Yang D R and Xia X H 2018 Curr. Opin. Electrochem. 7 95
[26] Mu X, Hu L, Cheng Y, Fang Y and Sun M 2021 Nanoscale 13 581
[27] Tanaka A, Hashimoto K and Kominami H 2014 J. Am. Chem. Soc. 136 586
[28] Zhao X, Liu C, Yu J, Li Z, Liu L, Li C, Xu S, Li W and Zhang C 2020 Nanophotonics 9 4761
[29] Kong B, Tang J, Selomulya C, Li W, Wei J, Fang Y, Wang Y, Zheng G and Zhao D 2014 J. Am. Chem. Soc. 136 6822
[30] Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B and Zhang H 2014 Small 10 3536
[31] Shi Y, Huang J K, Jin L, Hsu Y T, Yu S Y, Li L J and Yang H Y 2013 Sci. Rep. 3 1
[32] Sebastián P, Giannotti M I, Gómez E and Feliu J M 2018 ACS Appl. Energy Mater. 1 1016
[33] Zhou H, Yu F, Liu Y, Sun J, Zhu Z, He R, Bao J, Goddard III W A, Chen S and Ren Z 2017 Energy Environ. Sci. 10 1487
[34] Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E and Feng X 2017 Nat. Commun. 8 1
[35] Zhu Y P, Ma T Y, Jaroniec M and Qiao S Z 2017 Angew. Chem.-Int. Edit. 56 1324
[36] Yan K and Lu Y 2016 Small 12 2975
[37] Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X and Feng X 2016 Angew. Chem. 128 6814
[38] Lu J, Xiong T, Zhou W, Yang L, Tang Z and Chen S 2016 ACS Appl. Mater. Interfaces 8 5065
[39] Liu J, Zhang Y H, Bai Z M, Huang Z A and Gao Y K 2019 Chin. Phys. B 28 048101
[40] Tsai C, Abild-Pedersen F and N?rskov J K 2014 Nano Lett. 14 1381
[41] Sun J, Jiang S, Xu J, Li Z, Li C, Yu J, Zhao X, Pan J, Zhang C and Man B 2019 J. Phys. D: Appl. Phys. 52 195402
[42] Gong W, Jiang S, Li Z, Li C, Xu J, Pan J, Huo Y, Man B, Liu A and Zhang C 2019 Opt. Express 27 3483
[43] Chen J, Liu G, Zhu Y Z, et al. 2020 J. Am. Chem. Soc. 142 7161
[44] Gao Y, Cheng F, Fang W, Liu X, Wang S, Nie W, Chen R, Ye S, Zhu J, An H, Fan C, Fan F and Fan C 2021 Natl. Sci. Rev. 8 151
[45] Chen Z, Ren W, Gao L, Liu B, Pei S and Cheng H M 2011 Nat. Mater. 10 424
[46] Li C, Xu S, Yu J, Li Z, Li W, Wang J, Liu A, Man B, Yang S and Zhang C 2021 Nano Energy 81 105585
[47] Zhang H X, Li Y, Li M Y, Zhang H and Zhang J 2018 Nanoscale 10 2236
[48] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100
[49] Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci. Rep. 5 13801
[50] Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M and Koper M T 2017 Nat. Energy 2 1
[51] Li X, Zhu J and Wei B 2016 Chem. Soc. Rev. 45 3145
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[9] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[10] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[13] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
No Suggested Reading articles found!