INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction |
Xian-Wu Xiu(修显武)1,†, Wen-Cheng Zhang(张文程)1,†, Shu-Ting Hou(侯淑婷)1, Zhen Li(李振)1, Feng-Cai Lei(雷风采)2, Shi-Cai Xu(许士才)3, Chong-Hui Li(李崇辉)1,3,4, Bao-Yuan Man(满宝元)1, Jing Yu(郁菁)1,‡, and Chao Zhang(张超)1,§ |
1 School of Physics and Electronics, Collaborative Innovation Center of Light Manipulations and Applications, Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China; 2 College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, China; 3 Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; 4 Institute for Integrative Nanosciences, IFW Dresden, Dresden, 01069, Germany |
|
|
Abstract The efficient production of hydrogen through electrocatalytic decomposition of water has broad prospects in modern energy equipment. However, the catalytic efficiency and durability of hydrogen evolution catalyst are still very deficient, which need to be further explored. Here in this work, we prove that introducing a graphene layer (Gr) between the molybdenum disulfide and nickel foam (Ni-F) substrate can greatly improve the catalytic performance of the hybrid. Owing to the excitation of local surface plasmon resonance (LSPR) of gold nanoparticles (NPs), the electrocatalytic hydrogen releasing activity of the MoS2/Gr/Ni-F heterostructure is greatly improved. This results in a significant increase in the current density of AuNPs/MoS2/Gr/Ni-F composite material under light irradiation and in the dark at 0.2 V (versus reversible hydrogen electrode (RHE)), which is much better than in MoS2/Gr/Ni-F composite materials. The enhancement of hydrogen release can be attributed to the injection of hot electrons into MoS2/Gr/Ni-F by AuNPs, which will improve the electron density of MoS2/Gr/Ni-F, promote the reduction of H2O, and further reduce the activation energy of the electrocatalyst hydrogen evolution reaction (HER). We also prove that the introduction of graphene can improve its stability in acidic catalytic environments. This work provides a new way of designing efficient water splitting system.
|
Received: 30 November 2020
Revised: 05 February 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
88.30.em
|
(Electrolytic hydrogen)
|
|
81.16.Hc
|
(Catalytic methods)
|
|
61.48.Gh
|
(Structure of graphene)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804200, 11974222, 11904214, and 11774208), the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J18KZ011), the Taishan Scholars Program of Shandong Province (Grant No. tsqn201812104), the Qingchuang Science and Technology Plan of the Shandong Province, China (Grant Nos. 2019KJJ014 and 2019KJJ017), China Postdoctoral Science Foundation (Grant No. 2019M662423), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR201910280104). |
Corresponding Authors:
Jing Yu, Chao Zhang
E-mail: yujing1608@sdnu.edu.cn;czsdnu@126.com
|
Cite this article:
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超) Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction 2021 Chin. Phys. B 30 088801
|
[1] Wang C C, Li J R, Lv X L, Zhang Y Q and Guo G 2014 Energy Environ. Sci. 7 2831 [2] Chu S and Majumdar A 2012 Nature 488 294 [3] Dresselhaus M S and Thomas I L 2001 Nature 414 332 [4] Turner J A 2004 Science 305 972 [5] Zou X and Zhang Y 2015 Chem. Soc. Rev. 44 5148 [6] Roger I, Shipman M A and Symes M D 2017 Nat. Rev. Chem. 1 1 [7] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296 [8] Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S and Schaak R E 2013 J. Am. Chem. Soc. 135 9267 [9] Kibsgaard J, Chen Z, Reinecke B N and Jaramillo T F 2012 Nat. Mater. 11 963 [10] Chen W F, Sasaki K, Ma C, Frenkel A I, Marinkovic N, Muckerman J T, Zhu Y and Adzic R R 2012 Angew. Chem.-Int. Edn. 51 6131 [11] Andreiadis E S, Jacques P A, Tran P D, Leyris A, Chavarot-Kerlidou M, Jousselme B, Matheron M, Pécaut J, Palacin S, Fontecave M and Artero V 2013 Nat. Chem. 5 48 [12] Vrubel H and Hu X 2012 Angew. Chem.-Int. Edn. 51 12703 [13] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100 [14] Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308 [15] Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B and Xie Y 2013 J. Am. Chem. Soc. 135 17881 [16] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L and Jin S 2013 J. Am. Chem. Soc. 135 10274 [17] Li Y, Wang H, Xie L, Liang Y, Hong G and Dai H 2011 J. Am. Chem. Soc. 133 7296 [18] Zhang C, Jiang S Z, Huo Y Y, Liu A H, Xu S C, Liu X Y, Sun Z C, Xu Y Y, Li Z and Man B Y 2015 Opt. Express 23 24811 [19] Xu J, Li C, Si H, Zhao X, Wang L, Jiang S, Wei D, Yu J, Xiu X and Zhang C 2018 Opt. Express 26 21546 [20] Zhang C, Li C, Yu J, Jiang S, Xu S, Yang C, Liu Y J, Gao X, Liu A and Man B 2018 Sens. Actuator B-Chem. 258 163 [21] Wang C, Nie X G, Shi Y, Zhou Y, Xu J J, Xia X H and Chen H Y 2017 ACS Nano 11 5897 [22] Kamat P V and Hartland G V 2018 ACS Energy Lett. 3 1467 [23] Shi Y, Wang J, Wang C, Zhai T T, Bao W J, Xu J J, Xia X H and Chen H Y 2015 J. Am. Chem. Soc. 137 7365 [24] Liu G, Li P, Zhao G, Wang X, Kong J, Liu H, Zhang H, Chang K, Meng X, Kako T and Ye J 2016 J. Am. Chem. Soc. 138 9128 [25] Wang C, Shi, Y, Yang D R and Xia X H 2018 Curr. Opin. Electrochem. 7 95 [26] Mu X, Hu L, Cheng Y, Fang Y and Sun M 2021 Nanoscale 13 581 [27] Tanaka A, Hashimoto K and Kominami H 2014 J. Am. Chem. Soc. 136 586 [28] Zhao X, Liu C, Yu J, Li Z, Liu L, Li C, Xu S, Li W and Zhang C 2020 Nanophotonics 9 4761 [29] Kong B, Tang J, Selomulya C, Li W, Wei J, Fang Y, Wang Y, Zheng G and Zhao D 2014 J. Am. Chem. Soc. 136 6822 [30] Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B and Zhang H 2014 Small 10 3536 [31] Shi Y, Huang J K, Jin L, Hsu Y T, Yu S Y, Li L J and Yang H Y 2013 Sci. Rep. 3 1 [32] Sebastián P, Giannotti M I, Gómez E and Feliu J M 2018 ACS Appl. Energy Mater. 1 1016 [33] Zhou H, Yu F, Liu Y, Sun J, Zhu Z, He R, Bao J, Goddard III W A, Chen S and Ren Z 2017 Energy Environ. Sci. 10 1487 [34] Zhang J, Wang T, Liu P, Liao Z, Liu S, Zhuang X, Chen M, Zschech E and Feng X 2017 Nat. Commun. 8 1 [35] Zhu Y P, Ma T Y, Jaroniec M and Qiao S Z 2017 Angew. Chem.-Int. Edit. 56 1324 [36] Yan K and Lu Y 2016 Small 12 2975 [37] Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X and Feng X 2016 Angew. Chem. 128 6814 [38] Lu J, Xiong T, Zhou W, Yang L, Tang Z and Chen S 2016 ACS Appl. Mater. Interfaces 8 5065 [39] Liu J, Zhang Y H, Bai Z M, Huang Z A and Gao Y K 2019 Chin. Phys. B 28 048101 [40] Tsai C, Abild-Pedersen F and N?rskov J K 2014 Nano Lett. 14 1381 [41] Sun J, Jiang S, Xu J, Li Z, Li C, Yu J, Zhao X, Pan J, Zhang C and Man B 2019 J. Phys. D: Appl. Phys. 52 195402 [42] Gong W, Jiang S, Li Z, Li C, Xu J, Pan J, Huo Y, Man B, Liu A and Zhang C 2019 Opt. Express 27 3483 [43] Chen J, Liu G, Zhu Y Z, et al. 2020 J. Am. Chem. Soc. 142 7161 [44] Gao Y, Cheng F, Fang W, Liu X, Wang S, Nie W, Chen R, Ye S, Zhu J, An H, Fan C, Fan F and Fan C 2021 Natl. Sci. Rev. 8 151 [45] Chen Z, Ren W, Gao L, Liu B, Pei S and Cheng H M 2011 Nat. Mater. 10 424 [46] Li C, Xu S, Yu J, Li Z, Li W, Wang J, Liu A, Man B, Yang S and Zhang C 2021 Nano Energy 81 105585 [47] Zhang H X, Li Y, Li M Y, Zhang H and Zhang J 2018 Nanoscale 10 2236 [48] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100 [49] Shinagawa T, Garcia-Esparza A T and Takanabe K 2015 Sci. Rep. 5 13801 [50] Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M and Koper M T 2017 Nat. Energy 2 1 [51] Li X, Zhu J and Wei B 2016 Chem. Soc. Rev. 45 3145 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|