INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Tunable inhibition of β-amyloid peptides by fast green molecules |
Tiantian Yang(杨甜甜)1, Tianxiang Yu(俞天翔)1, Wenhui Zhao(赵文辉)1,†, and Dongdong Lin(林冬冬)1,2,‡ |
1 Department of Microelectronic Science and Engineering, Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China |
|
|
Abstract The aggregation of β-amyloid (Aβ) protein into toxic intermediates and mature fibrils is considered to be one of the main causes of Alzheimer's disease (AD). Small molecules as one of blockers are expected to be the potential drug treatment for the disease. However, the nucleation process in molecular assembly is less informative in the literatures. In this work, the formation of Aβ (16-22) peptides was investigated with the presence of small molecule of fast green (FG) at the initial aggregation stage. The results exhibited the tunable inhibitory ability of FG molecules on Aβ (16-22) peptides. Atomic force microscopy (AFM) demonstrated that the inhibitory effect would be dependent on the dose of FG molecules, which could delay the lag time (nucleation) and form single layer conjugates. Spectral measurements further showed that the β-sheet secondary structure of Aβ (16-22) reduced dramatically after the presence of FG molecules. Instead, non-β-sheet nanosheets were formed when the FG/Aβ (16-22) ratio reached 1:1. In addition, the cytotoxicity of aggregates reduced greatly with the presence of FG molecules compared with the Aβ (16-22) fibrils. Overall, this study provided a method for suppressing the toxic amyloid aggregates by FG molecules efficiently, and also showed a strategy for fabrication of two-dimensional materials by small molecules.
|
Received: 15 May 2021
Revised: 26 May 2021
Accepted manuscript online: 29 May 2021
|
PACS:
|
87.15.-v
|
(Biomolecules: structure and physical properties)
|
|
87.14.E-
|
(Proteins)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grand No. 11804174), Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, and K. C. Wong Magna Fund in Ningbo University. |
Corresponding Authors:
Wenhui Zhao, Dongdong Lin
E-mail: zhaowenhui@nbu.edu.cn;lindongdong@nbu.edu.cn
|
Cite this article:
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬) Tunable inhibition of β-amyloid peptides by fast green molecules 2021 Chin. Phys. B 30 088701
|
[1] Huntley J D and Howard R J 2010 Int. J. Geriatr. Psychiatry 25 121 [2] Morris R G and Mograbi D C 2013 Cortex 49 1553 [3] Gandhi J, Antonelli A C, Afridi A, Vatsia S, Joshi G, Romanov V, Murray I V J and Khan S A 2019 Rev. Neurosci. 30 339 [4] Younkin S G 1998 J. Physiol. 92 289 [5] Citron M 2010 Nat. Rev. Drug Discov. 9 387 [6] Mattson M P 2004 Nature 430 631 [7] Selkoe D J 2001 Physiol. Rev. 81 741 [8] Damante C A, Ösz K, Nagy Z, Grasso G, Pappalardo G, Rizzarelli E and Sóvágó I 2011 Inorg. Chem. 50 5342 [9] Li J, Liu R, Lam K S, Jin L W and Duan Y 2011 Biophys. J. 100 1076 [10] Chimon S, Shaibat M A, Jones C R, Calero D C, Aizezi B and Ishii Y 2008 Nat. Struct. Mol. Biol. 14 1157 [11] Klimov D K and Thirumalai D 2003 Structure. 11 295 [12] Lynn D and Meredith S 2000 J. Struct. Biol. 130 153 [13] Liang C, Ni R, Smith J E, Childers W S, Mehta A K and Lynn D G 2014 J. Am. Chem. Soc. 136 15146 [14] Balbach J J, Ishii Y, Antzutkin O N, Leapman R D, Rizzo N W, Dyda F, Reed J and Tycko R 2000 Biochemistry 39 13748 [15] Dai B, Li D, Xi W, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang W, Wei G, Zhang Y and Liu C 2015 Proc. Natl. Acad. Sci. USA 112 2996 [16] Chen J, Zhu E, Liu J, Zhang S, Lin Z, Duan X, Heinz H, Huang Y and De Yoreo J J 2018 Science 362 1135 [17] Li H, Luo Y, Derreumaux P and Wei G 2011 Biophys J. 101 2267 [18] Lin D, Lei J, Li S, Zhou X, Wei G and Yang X 2020 J. Phys. Chem. B 124 3459 [19] Xie L, Luo Y, Lin D, Xi W, Yang X and Wei G 2014 Nanoscale 6 9752 [20] Li S, Wang L, Chusuei C, Suarez V, Blackwelder P, Micic M, Orbulescu J and Leblanc R 2015 Chem. Mater. 27 1764 [21] Liu Y, Xu L P, Dai W, Dong H, Wen Y and Zhang X 2015 Nanoscale 7 19060 [22] Ngo S T, Truong D T, Tam N M and Nguyen M T 2017 J. Mol. Graph. Model. 76 1 [23] Nespovitaya N, Mahou P, Laine R F, Schierle G S K and Kaminski C F 2017 Chem. Commun. (Camb). 53 1273 [24] Sun Y, Xi W and Wei G. 2015 J Phys Chem B. 119 2786 [25] Bieschke J, Herbst M, Wiglenda T, Friedrich R P, Boeddrich A, Schiele F, Kleckers D, Lopez del Amo JM, Grüning B A, Wang Q, Schmidt M R, Lurz R, Anwyl R, Schnoegl S, Fändrich M, Frank R F, Reif B, Günther S, Walsh D M and Wanker E E 2011 Nat. Chem. Biol. 8 93 [26] Meng F, Abedini A, Plesner A, Middleton C T, Potter K J, Zanni M T, Verchere C B and Raleigh D P 2010 J. Mol. Biol. 400 555 [27] Yang F, Lim G P, Begum A N, Ubeda O J, Simmons M R, Ambegaokar S S, Chen P P, Kayed R, Glabe C G, Frautschy S A and Cole G M 2005 J. Biol. Chem. 280 5892 [28] Necula M, Breydo L, Milton S, Kayed R, van der Veer W E, Tone P and Glabe C G 2007 Biochemistry 46 8850 [29] Lorenzo A and Yankner B A 1994 Proc. Natl. Acad. Sci. USA 91 12243 [30] How S C, Yang S M, Hsin A, Tseng C P, Hsueh S S, Lin M S, Chen R P, Chou W L and Wang S S 2016 Food Funct. 7 4898 [31] Young L M, Saunders J C, Mahood RA, Revill C H, Foster R J, Tu L H, Raleigh D P, Radford S E and Ashcroft A E 2015 Nat. Chem. 7 73 [32] Liu F, Wang W, Xuan Z, Jiang L, Chen B, Dong Q, Zhao F, Cui W, Li L and Lu F 2021 Int. J. Biol. Macromol. 170 33 [33] Lin D, Luo Y, Wu S, Ma Q, Wei G and Yang X 2014 Langmuir 30 3170 [34] Wen G, Qin W, Chen D, Wang Y, Yue X, Liu Z, Cao Y, Du J, Zhou B and Bu X 2017 Chem. Commun. (Camb). 53 3886 [35] Zhang J, Zhou L, Du Q, Shen Z, Hu J and Zhang Y 2019 Nanoscale. 11 8210 [36] Dai B, Kang S G, Huynh T, Lei H, Castelli M, Hu J, Zhang Y and Zhou R 2013 Proc. Natl. Acad. Sci. USA 110 8543 [37] Sedin D L and Rowlen K L 2000 Anal. Chem. 72 2183 [38] Jiang T and Zhu Y. 2015 Nanoscale 7 10760 [39] Kreis C T, Grangier A and Bäumchen O 2019 Soft Matter 15 3027 [40] Sarroukh R, Goormaghtigh E, Ruysschaert J M and Raussens V 2013 Biochim. Biophys. Acta 1828 2328 [41] Kong J and Yu S 2007 Acta Biochim. Biophys. Sin. (Shanghai). 39 549 [42] Kinoshita M, Lin Y, Dai I, Okumura M, Markova N, Ladbury JE, Sterpone F and Lee Y H 2018 Chem. Commun. (Camb). 54 7995 [43] Seong S H, Paudel P, Jung H A and Choi J S 2019 Mar. Drugs 17 600 [44] Lin D, Luo Y, Wu S, Ma Q, Wei G and Yang X 2014 Langmuir 30 3170 [45] Sun Q, Liu F, Sang J, Lin M, Ma J, Xiao X, Yan S, Naman CB, Wang N, He S, Yan X, Cui W and Liang H 2019 Mar. Drugs 17 121 [46] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins 78 1950 [47] Hess B, Bekker H, Berendsen H J C and Fraaije J G E M 1997 J. Comput. Chem. 18 1463 [48] Miyamoto S and Kollman P A 1992 J. Comput. Chem. 13 952 [49] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182 [50] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|