1 Department of Physics, East China University of Science and Technology, Shanghai 200237, China; 2 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; 3 College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China; 4 Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai 200237, China
Abstract We present a scheme for the quantum storage of single photons using electromagnetically induced transparency (EIT) in a low-finesse optical cavity, assisted by state-selected spontaneous atomic emission. Mediated by the dark mode of cavity EIT, the destructive quantum interference between the cavity input-output channel and state-selected atomic spontaneous emission leads to strong absorption of single photons with unknown arrival time and pulse shapes. We discuss the application of this phenomenon to photon counting using stored light.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674094, 11774089, 11874146, 11981260012, and 12034007) and the Shanghai Natural Science Foundation, China (Grant Nos. 18ZR1410500 and 18DZ2252400).
Corresponding Authors:
Gong-Wei Lin, Yue-Ping Niu, Shang-Qing Gong
E-mail: gwlin@ecust.edu.cn;niuyp@ecust.edu.cn;sqgong@ecust.edu.cn
Cite this article:
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆) Quantum storage of single photons with unknown arrival time and pulse shapes 2021 Chin. Phys. B 30 084207
[1] Kimble H J 2008 Nature453 1023 [2] Lukin M D 2003 Rev. Mod. Phys.75 457 [3] Hammerer K, Sørensen A S and Polzik E S 2010 Rev. Mod. Phys.82 1041 [4] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature473 190 [5] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett.98 193601 [6] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett.84 5094 [7] Gorshkov A V, Calarco T, Lukin M D and Sørensen A S 2008 Phys. Rev. A77 043806 [8] Schraft D, Hain M, Lorenz N and Halfmann T 2016 Phys. Rev. Lett.116 073602 [9] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A and Chen Y C 2018 Phys. Rev. Lett.120 183602 [10] Deng R J, Yang Z H and Jia X J 2017 Acta Phys. Sin.66 074201 (in Chinese) [11] Dudin Y O, Li L and Kuzmich A 2013 Phys. Rev. A87 031801 [12] Katz O and Firstenberg O 2018 Nat. Commun.9 2074 [13] Qi Y R, Gao H and Zhang S G 2009 Chin. Phys. Lett.26 114211 [14] Heinze G, Hubrich C and Halfmann T 2013 Phys. Rev. Lett.111 033601 [15] Chen L R, Xu Z X, Li P, Wen Y F, Zeng W Q, Wu Y L, Tian L, Li S J and Wang H 2016 Chin. Phys. B25 024203 [16] Li W, Islam P and Windpassinger P 2020 Phys. Rev. Lett.125 150501 [17] Vernaz-Gris P, Huang K, Cao M, Sheremet A S and Laurat J 2018 Nat. Commun.9 363 [18] Wei Y C, Wu B H, Hsiao Y F, Tsai P J and Chen Y C 2020 Phys. Rev. A102 063720 [19] Peters T, Wang T P, Neumann A, Simeonov L S and Halfmann T 2020 Opt. Express28 5340 [20] Gouraud B, Maxein D, Nicolas A, Morin and Laurat J 2015 Phys. Rev. Lett.114 180503 [21] Sayrin C, Clausen C, Albrecht B, Schneeweiss P and Rauschenbeutel A 2015 Optica2 353 [22] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett.100 093602 [23] Wang K, Zhang W, Zhou Z Y, Dong M X, Shi S, Liu S L, Ding D S and Shi B S 2017 Chin. Opt. Lett.15 060201 [24] Eisaman M, André, Massou F, Fleischhauer M, Zibrov A and Lukin M 2005 Nature438 837 [25] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D and Laurat J 2014 Nat. Photon.8 234 [26] Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Nat. Commun.97 062318 [27] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon.13 346 [28] Gorshkov A V, André A, Fleischhauer M, Sørensen A S and Lukin M D 2007 Phys. Rev. Lett.98 123601 [29] Novikova I, Phillips N B and Gorshkov A V 2008 Phys. Rev. A78 021802 [30] Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Nature409 791 [31] Dong C H, Fiore V, Kuzyk M and Wang H 2012 Science338 1609 [32] James D F V and Kwiat P G 2002 Phys. Rev. Lett.89 183601 [33] Imamoḡlu A 2002 Phys. Rev. Lett.89 163602 [34] Lin G W, Qi Y H, Lin X M, Niu Y P and Gong S Q 2015 Phys. Rev. A92 043842 [35] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag) [36] Tian L 2012 Phys. Rev. Lett.108 153604 [37] Wang Y D and Clerk A A 2012 Phys. Rev. Lett.108 153603 [38] Duan L M, Kuzmich A and Kimble H J 2003 Phys. Rev. A67 032305 [39] Duan L M and Kimble H J 2004 Phys. Rev. Lett.92 127902 [40] Simon J, Tanji H, Thompson J K and Vuletic V 2007 Phys. Rev. Lett.98 183601 [41] Wu H, Gea-Banacloche J and Xiao M 2008 Phys. Rev. Lett.100 173602
Qubits based on semiconductor quantum dots Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.