CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Achieving high-performance multilayer MoSe2 photodetectors by defect engineering |
Jintao Hong(洪锦涛)1, Fengyuan Zhang(张丰源)1, Zheng Liu(刘峥)2, Jie Jiang(蒋杰)3, Zhangting Wu(吴章婷)1,†, Peng Zheng(郑鹏)1, Hui Zheng(郑辉)1, Liang Zheng(郑梁)1, Dexuan Huo(霍德璇)4, Zhenhua Ni(倪振华)3, and Yang Zhang(张阳)1,‡ |
1 Laboratory for Nanoelectronics and NanoDevices, Department of Electronics Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Jiangsu Province Special Equipment Safety Supervision and Inspection Institute, Wuxi 214170, China; 3 School of Physics, Southeast University, Nanjing 211189, China; 4 Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract Optoelectronic properties of MoSe2 are modulated by controlled annealing in air. Characterizations by Raman spectroscopy and XPS demonstrate the introduction of oxygen defects. Considerable increase in electron and hole mobilities reveals the highly improved electron and hole transport. Furthermore, the photocurrent is enhanced by nearly four orders of magnitudes under 7 nW laser exposure after annealing. The remarkable enhancement in the photoresponse is attributed to an increase in hole trapping centers and a reduction in resistance. Furthermore, the annealed photodetector shows a fast time response on the order of 10 ms and responsivity of 3×104 A/W.
|
Received: 14 December 2020
Revised: 03 February 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
85.30.Tv
|
(Field effect devices)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61904043) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ19A040009). |
Corresponding Authors:
Zhangting Wu, Yang Zhang
E-mail: wuzhangting@hdu.edu.cn;yzhang09@hdu.edu.cn
|
Cite this article:
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳) Achieving high-performance multilayer MoSe2 photodetectors by defect engineering 2021 Chin. Phys. B 30 087801
|
[1] Mak K F and Shan J 2016 Nat. Photon. 10 216 [2] Dai Z H, Liu L Q and Zhang Z 2019 Adv. Mater. 31 1805417 [3] Wang L, Liu C L, Chen X S, Zhou J, Hu W D, Wang X F, Li J H, Tang W W, Yu A Q, Wang S W and Lu W 2017 Adv. Funct. Mater. 27 1604414 [4] Miao J S, Song B, Xu Z H, Cai L, Zhang S M, Dong L X and Wang C 2017 Small 14 1702082 [5] Ye Y, Wong Z J, Lu X F, Ni X J, Zhu H Y, Chen X H, Wang Y and Zhang X 2015 Nat. Photon. 9 733 [6] Xie C, Mak C, Tao X M and Yan F 2016 Adv. Funct. Mater. 27 1603886 [7] Tu L Q, Cao R R, Wang X D, Chen Y, Wu S Q, Wang F, Wang Z, Shen H, Lin T, Zhou P, Meng X J, Hu W D, Liu Q, Wang J L, Liu M and Chu J H. 2020 Nat. Commun. 11 101 [8] Hu Z H, Wu Z T, Han C, He J, Ni Z H and Chen W 2018 Chem. Soc. Rev. 47 3100 [9] Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J and Park J H 2016 Adv. Mater. 28 6985 [10] Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y, Lee S, Yu H Y, Choi C and Park J H 2016 Adv. Mater. 28 4824 [11] Lu J P, Carvalho A, Chan X K, Liu H W, Liu B, Tok E S, Loh K P, Castro Neto A H and Sow C 2015 Nano Lett. 15 3524 [12] Yamamoto M, Ueno K and Tsukagoshi K 2018 Appl. Phys. Lett. 112 181902 [13] Jiang J, Ling C Y, Xu T, Wang W H, Niu X H, Zafar A, Yan Z Z, Wang X M, You Y M, Sun L T, Lu J P, Wang J L and Ni Z H 2018 Adv. Mater. 30 1804332 [14] Wu Z T, Luo Z Z, Shen Y Y, Zhao W W, Wang W, Nan H Y, Guo X T, Sun L T, Wang X R, You Y M and Ni Z H 2016 Nano Res. 9 3622 [15] Long M S, Wang Y, Wang P, Zhou X H, Xia H, Luo C, Huang S Y, Zhang G W, Yan H G, Fan Z Y, Wu X, Chen X S, Lu W and Hu W D 2019 ACS Nano 13 2511 [16] Chen X S, Liu G B, Hu Y X, Cao W W, Hu P A and Hu W P 2017 Nanotechnology 29 045202 [17] Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn D R T, Vasconcellos S M de and Bratschitsch R 2013 Opt. Express 21 4908 [18] Zheng X M, Wei Y H, Liu J X, Wang S T, Shi J, Yang H, Peng G, Deng C Y, Luo W, Zhao Y, Li Y Z, Sun K, Wan W, Xie H P, Gao Y L, Zhang X A and Huang H 2019 Nanoscale 11 13469 [19] Nan H Y, Wang Z L, Wang W H, Liang Z, Lu Y, Chen Q, He D W, Tan P H, Miao F, Wang X R, Wang J and Ni Z H 2014 ACS Nano 8 5738 [20] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626 [21] Zhang X K, Liao Q L, Liu S, Kang Z, Zhang Z, Du J L, Li F, Zhang S H, Xiao J K, Liu B S, Ou Y, Liu X Z, Gu L and Zhang Y 2017 Nat. Commun. 8 15881 [22] Jiang J, Xu T, Lu J P, Sun L T and Ni Z H 2019 Research 2019 4641739 [23] Wang Z, Wang P, Wang F, et al. 2019 Adv. Funct. Mater. 30 1907945 [24] Wu Z T, Zhu N C, Jiang J, Zafar A, Hong J T and Zhang Y 2019 APL Mater. 7 041108 [25] Nan H Y, Wu Z T, Jiang J, Zafer A, You Y and Ni Z H 2017 J. Phys. D: Appl. Phys. 50 154001 [26] Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y and Wang X R 2014 Nat. Commun. 5 5290 [27] Liu B L, Ma Y Q, Zhang A Y, Chen L, Abbas A N, Liu Y H, Shen C F, Wan H C and Zhou C W 2016 ACS Nano 10 5153 [28] Wu G J, Wang X D, Chen Y, Wu S Q, Wu B M, Jiang Y Y, Shen H, Lin T, Liu Q, Wang X R, Zhou P, Zhang S T, Hu W, Meng X J, Chu J H and Wang J L 2020 Adv. Mater. 32 1907937 [29] Wang Y, Wu P S, Wang Z, et al. 2020 Adv. Mater. 32 2005037 [30] Zhang W J, Chiu M H, Chen C H, Chen W, Li L J and Wee A T S 2014 ACS Nano 8 8653 [31] Huo N J and Konstantatos G 2017 Nat. Commun. 8 572 [32] Kufer D, Nikitskiy L, Lasanta T, Navickaite G, Koppens F H L and Konstantatos G 2014 Adv. Mater. 27 176 [33] Hu C, Dong D D, Yang X K, Qiao K, Yang D, Deng H, Yuan S J, Khan J, Lan Y, Song H S and Tang J 2016 Adv. Funct. Mater. 27 1603605 [34] Hu Z H, Li Q, Lei B, Wu J, Zhou Q H, Gu C D, Wen X L, Wang J Y, Liu Y P, Li S S, Zheng Y, Lu J P, He J, Wang L, Xiong Q H, Wang J L and Chen W 2018 Adv. Mater. 30 1801931 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|