Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088801    DOI: 10.1088/1674-1056/26/8/088801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation

Yan-Qing Zhang(张延清)1, Ming-Xue Huo(霍明学)2, Yi-Yong Wu(吴宜勇)1,2, Cheng-Yue Sun(孙承月)2, Hui-Jie Zhao(赵慧杰)1, Hong-Bin Geng(耿洪滨)1, Shuai Wang(王帅)3, Ru-Bin Liu(刘如彬)3, Qiang Sun(孙强)3
1 School of Materials Science & Engineering, Harbin Institute of Technology, Harbin 150001, China;
2 Research Center of Basic Space Science, Harbin Institute of Technology, Harbin 150001, China;
3 The 18th Research Institute of China Electronics Technology Group Corporation, Tianjin 300381, China
Abstract  

In this work the degradation effects of the Ga0.7In0.3As (1.0 eV) and Ga0.42In0.58As (0.7 eV) sub-cells for IMM4J solar cells are investigated after 1-MeV electron irradiation by using spectral response and photoluminescence (PL) signal amplitude analysis, as well as electrical property measurements. The results show that, compared with the electrical properties of traditional single junction (SJ) GaAs (1.41 eV) solar cell, the electrical properties (such as Isc, Voc, and Pmax) of the newly sub-cells degrade similarly as a function of Φ, where Φ represents the electron fluence. It is found that the degradation of Voc is much more than that of Isc in the irradiated Ga0.42In0.58As (0.7 eV) cells due to the additional intrinsic layer, leading to more serious damage to the space charge region. However, of the three types of SJ cells with the gap widths of 0.7, 1.0, and 1.4 eV, the electric properties of the Ga0.7In0.3As (1.0 eV) cell decrease largest under each irradiation fluence. Analysis on the spectral response indicates that the Jsc of the Ga0.7In0.3As (1.0 eV) cell also shows the most severe damage. The PL amplitude measurements qualitatively confirm that the degradation of the effective minority carrier life-time (τeff) in the SJ Ga0.7In0.3As cells is more drastic than that of SJ GaAs cells during the irradiation. Thus, the output current of Ga0.7In0.3As sub-cell should be controlled in the irradiated IMM4J cells.

Keywords:  IMM4J      Ga0.7In0.3As (1.0 eV)      Ga0.42In0.58As (0.7 eV)      electrical properties  
Received:  04 March 2017      Revised:  21 April 2017      Accepted manuscript online: 
PACS:  88.40.jp (Multijunction solar cells)  
  88.40.H- (Solar cells (photovoltaics))  
  88.40.fh (Advanced materials development)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11475049).

Corresponding Authors:  Yi-Yong Wu     E-mail:  wuyiyong@hit.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yan-Qing Zhang(张延清), Ming-Xue Huo(霍明学), Yi-Yong Wu(吴宜勇), Cheng-Yue Sun(孙承月), Hui-Jie Zhao(赵慧杰), Hong-Bin Geng(耿洪滨), Shuai Wang(王帅), Ru-Bin Liu(刘如彬), Qiang Sun(孙强) Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation 2017 Chin. Phys. B 26 088801

[1] Yamaguchi M, Takamoto T, Araki K and Ekins-Daukes N 2005 Sol. Energy 79 78
[2] Friedman D J, Geisz J F, Norman A G and Wanlass M W 2006 Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7-12, 2006, Waikoloa, Hawaii, USA, 1 598
[3] Wilt D and Stan M 2012 Industrial & Engineering Chemistry Research 51 11931
[4] France R M, Geisz J F, Steiner M A and Friedman D J 2013 The 38th IEEE Photovoltaic Specialists Conference, 2012, June 3-8, Austin, USA, 3 p. 893
[5] Patel P, Aiken D, Boca A and Cho B 2011 The 37th IEEE Photovoltaic Specialists Conference, 2011, June 19, Seattle, USA, 2 p. 377
[6] Wanlass M W, Ahrenkiel S P, Ahrenkiel R K and Albin D S 2005 The 31th IEEE Photovoltaic Specialists Conference, 2005, January 3-7, Springs, Coronado, USA, p. 530
[7] Rehder E M, Jun B, Chiu P and Wierman S 2014 The 39th IEEE Photovoltaic Specialists Conference, 2013, June 16-21, Tampa, Florida, USA, p. 3608
[8] Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N, Wanlass M W and Romero M 2010 The 35th IEEE Photovoltaic Specialists Conference, 2010, June 20-25 Honolulu, Hawaii, USA, p. 2125
[9] Ma D Y, Chen N F, Fu R, Liu H, Bai Y M, Mi Z and Chen J K 2017 Acta Phys. Sin. 66 048801 (in Chinese)
[10] Boisvert J, Law D, King R, Rehder E and Chiu P 2014 The 39th IEEE Photovoltaic Specialists Conference, 2013, June 16-21, Tampa, Florida, USA, 2 p. 2790
[11] Geisz J F, France R M, Steiner M A and Friedman D J 2014 The 10th International Conference on Concentrator Photovaltics Systems, 2014, April 7-9, Albuquerque NM, USA, 1616 p. 114
[12] Zhang X R, Li B C and Liu X M 2008 Acta Phys. Sin. 57 7310 (in Chinese)
[13] Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M and Lan M J 2014 Acta Phys. Sin. 63 188101 (in Chinese)
[14] Gao X, Yang S S, Xue Y X, Li K and Li D M 2009 Chin. Phys. B 18 5015
[15] Mehrotra A and Freundlich A 2013 The International Society for Optical Engineering (Proceedings of SPIE) 8620 10030
[16] Razykov T M, Ferekides C S, Morel D, Stefanakos E, Ullal H S and Upadhyaya H M 2011 Sol. Energy 85 1580
[17] Liu J Y, Song P, Wang F and Wang Y 2015 Chin. Phys. B 24 097801
[18] Sato S, Miyamoto H, Imaizumi M, Shimazaki K and Morioka C 2009 Sol. Energ. Mater. Sol. Cells 93 768
[19] Hu J M, Wu Y Y, Xiao J D, Yang D Z and Zhang Z W 2008 Sol. Energ. Mater. Sol. Cells 92 1652
[20] Loo R Y, Kamath G S and Li S S 1990 IEEE Trans. Electron Dev. 37 485
[21] Patel P, Aiken D, Chumney D and Cornfeld A 2012 The 38th IEEE Photovoltaic Specialists Conference, 2012, June 3-8, Austin, USA, 2 1
[22] Herlufsen S, Schmidt J, Hinken D, Bothe K and Brendel R 2008 Rapid Research Letters 2 245
[23] Trupke T, Bardos R A and Abbott M D 2005 Appl. Phys. Lett. 87 184102
[24] Synopsys Inc., Sentaurus Device, Synopsys Inc.
[25] Angelis N D, Bourgoin J C, Takamoto T, Khan A and Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495
[26] Levinshteim M, Rumyantsev S and Shur M 1996 Handbook Series on Semiconductor Parameters, Vol. 2 (Hong Kong: World Scientific) p. 78
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[4] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[5] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[6] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[7] Suppression of ion migration in perovskite materials by pulse-voltage method
Xue-Yan Wang(王雪岩), Hu Wang(王虎), Luo-Ran Chen(陈烙然), Yu-Chuan Shao(邵宇川), and Jian-Da Shao(邵建达). Chin. Phys. B, 2021, 30(11): 118104.
[8] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[9] Electrical properties of m×n cylindrical network
Zhi-Zhong Tan(谭志中), Zhen Tan(谭震). Chin. Phys. B, 2020, 29(8): 080503.
[10] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[11] Structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond films
Hui Xu(徐辉), Jian-Jun Liu(刘建军), Hai-Tao Ye(叶海涛), D J Coathup, A V Khomich, Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2018, 27(9): 096104.
[12] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[13] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
[14] Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films
H M Zeyada, F M El-Taweel, M M El-Nahass, M M El-Shabaan. Chin. Phys. B, 2016, 25(7): 077701.
[15] Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2
Osama A Desouky, K E Rady. Chin. Phys. B, 2016, 25(6): 068402.
No Suggested Reading articles found!