|
|
Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface |
Wen-Xiao Shi(时文潇)1,2, Hui Zhang(张慧)1,2, Shao-Jin Qi(齐少锦)1,2, Jin-E Zhang(张金娥)1,2, Hai-Lin Huang(黄海林)1,2, Bao-Gen Shen(沈保根)1, Yuan-Sha Chen(陈沅沙)1,3,†, and Ji-Rong Sun(孙继荣)1,4,5,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Fujian Innovation Academy, Chinese Academy of Sciences, Fuzhou 350108, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Spintronics Institute, University of Jinan, Jinan 250022, China |
|
|
Abstract Two-dimensional electron gases (2DEGs) formed at the interface between two oxide insulators present a promising platform for the exploration of emergent phenomena. While most of the previous works focused on SrTiO$_{3}$-based 2DEGs, here we took the amorphous-ABO$_{3}$/KTaO$_{3}$ system as the research object to study the relationship between the interface conductivity and the redox property of B-site metal in the amorphous film. The criterion of oxide-oxide interface redox reactions for the B-site metals, Zr, Al, Ti, Ta, and Nb in conductive interfaces was revealed: the formation heat of metal oxide, ${\Delta H}_{\rm f}^{\rm o}$, is lower than $-350 $ kJ/(mol O) and the work function of the metal $\varPhi $ is in the range of 3.75 eV$ <\varPhi <4.4$ eV. Furthermore, we found that the smaller absolute value of ${\Delta H}_{\rm f}^{\rm o}$ and the larger value of $\varPhi $ of the B-site metal would result in higher mobility of the two-dimensional electron gas that formed at the corresponding amorphous-ABO$_{3}$/KTaO$_{3}$ interface. This finding paves the way for the design of high-mobility all-oxide electronic devices.
|
Received: 01 February 2021
Revised: 22 March 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300701, 2017YFA0206304, and 2018YFA0305704), the National Natural Science Foundation of China (Grant Nos. 11934016, 111921004, 51972335, and 11674378), and the Key Program of the Chinese Academy of Sciences (Grant Nos. XDB33030200 and QYZDY-SSW-SLH020). |
Corresponding Authors:
Yuan-Sha Chen, Ji-Rong Sun
E-mail: yschen@iphy.ac.cn;jrsun@iphy.ac.cn
|
Cite this article:
Wen-Xiao Shi(时文潇), Hui Zhang(张慧), Shao-Jin Qi(齐少锦), Jin-E Zhang(张金娥), Hai-Lin Huang(黄海林), Bao-Gen Shen(沈保根), Yuan-Sha Chen(陈沅沙), and Ji-Rong Sun(孙继荣) Thermodynamic criterion for searching high mobility two-dimensional electron gas at KTaO3 interface 2021 Chin. Phys. B 30 077302
|
[1] Ohtomo A and Hwang H Y 2004 Nature 427 423 [2] Hotta Y, Susaki T and Hwang H Y 2007 Phys. Rev. Lett. 99 236805 [3] Kim J S, Seo S Sea A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B. 82 201407 [4] Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A, Budhani R C and Lesueur J 2010 Nat. Commun. 1 89 [5] Chen Y Z, Pryds N, Kleibeuker J E, Sun J R, Stamate E, Koster G, Shen B G, Rijnders G and Linderoth S 2011 Nano. Lett. 11 3774 [6] Li C, Xu Q F, Wen Z F, Zhang S T, Li A D and Wu D 2013 Appl. Phys. Lett. 103 201602 [7] Gunkel F, Skaja K, Shkabko A, Dittmann R, Hoffmann-Eifert S and Waser R 2013 Appl. Phys. Lett. 102 071601 [8] Chen Y Z, Bovet N, Trier F, Christensen D V, Qu F M, Andersen N H, Kasama T, Zhang W, Giraud R, Dufouleur J, Jespersen T S, Sun J R, Smith A, Nygard J, Lu L, Büchner B, Shen B G, Linderothand S and Pryds N 2013 Nat. Commun. 4 1371 [9] Huang Z, Han K, Zeng S W, Motapothula M, Borisevich A Y, Ghosh S, Lü W M, Li C J, Zhou W X, Liu Z Q, Coey M, Venkatesan T and Ariando 2015 Nano Lett. 16 2307 [10] Chen Y Z, Trier F, Kasama T, Christensen D V, Bovet N, Balogh Z I, Li H, Thydén K T S, Zhang W, Yazdi S, Norby P, Pryds N and Linderoth S 2015 Nano Lett. 15 1849 [11] Wang F N, Li J C, Zhang X M, Liu H Z, Liu J, Wang C L, Zhao M L, Su W B and Mei L M 2017 Chin. Phys. B. 26 037101 [12] Qi S J, Sun X, Yan X, Zhang H, Zhang H R, Zhang J E, Huang H L, Han F R, Song J H, Shen B G and Chen Y S 2021 Chin. Phys. B. 30 017301 [13] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 [14] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624 [15] Brinkman A, Huijben M, van Zalk M, Huijben J, Zeitler U, Maan J C, van der Wiel W G, Rijnders G, Blank and Hilgenkamp H 2007 Nat. Mater. 6 493 [16] Kalisky B, Bert J A, Klopfer B B, Bell C, Sato H K, Hosoda M, Hikita Y, Hwang H Y and Moler K A 2012 Nat. Commun. 3 922 [17] Lee J S, Xie Y W, Sato H K, Bell C, Hikita Y, Hwang H Y and Kao C C 2013 Nat. Mater. 12 703 [18] Trier F, Prawiroatmodjo G, Zhong Z, Christensen D, Soosten M, Bhowmik A, Lastra J, Chen Y, Jespersen T and Pryds N 2016 Phys. Rev. Lett. 117 096804 [19] Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jarés H, Fert A, Bibes M and Vila L 2016 Nat. Mater. 15 1261 [20] Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R and Han W 2017 Sci. Adv. 3 e1602312 [21] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J and Ahn C H 2015 APL Mater. 3 036104 [22] Harashima S, Bell C, Kim M, Yajima T, Hikita Y and Hwang H Y 2013 Phys. Rev. B. 88 085102 [23] Höchli U T, Weibel H E and Boatner L A 1977 Phys. Rev. Lett. 39 1158 [24] King P D C, He R H, Eknapakul T, Buaphet P, Mo S K, Kaneko Y, Harashima S, Hikita Y, Bahramy M S, Bell C, Hussain Z, Tokura Y, Shen Z X, Hwang H Y, Baumberger F and Meevasana W 2012 Phys. Rev. Lett. 108 117602 [25] Zhang H, Zhang H R, Yan X, Zhang X J, Zhang Q H, Zhang J, Han F R, Gu L, Liu B G, Chen Y S, Shen B G and Sun J R 2017 ACS Appl. Mater. Interfaces 9 36456 [26] Zhang H, Yan X, Zhang X J, Wang S, Xiong C M, Zhang H R, Qi S J, Zhang J E, Han F R, Wu N, Liu B G, Chen Y S, Shen B G and Sun J R 2019 ACS Nano 13 609 [27] Zhang H R, Yun Y, Zhang X J, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y S, Liu W, Hu F X, Liu B G, Shen B G, Han W and Sun J R 2018 Phys. Rev. Lett. 121 116803 [28] Joshua A, Pecker S, Ruhman J, Altman E and Ilani S 2012 Nat. Commun. 3 1129 [29] Nakagawa N, Hwang H Y and Muller D A 2012 Nat. Mater. 5 204 [30] Basletic M, Maurice J L, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet É, Bouzehouane K, Fusil S and Barthélémy A 2008 Nat. Mater. 7 621 [31] Willmott P R, Pauli S A, Herger R, Schlepütz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502 [32] Herranz G, Basletic M, Bibes M, Carrétéro C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthélémy A and Fert A 2007 Phys. Rev. Lett. 98 216803 [33] Fu Q and Wagner T 2007 Surf. Sci. Rep. 62 431 [34] Lide D R 2010 CRC Handbook of Chemistry and Physics [M], 92nd (Boca Raton: CRC Press) pp. 5-5, 5-10, 5-12, 5-15, 5-16, 5-17, 12-114 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|